话不多说,直接开干
import pandas as pd
import matplotlib.pyplot as plt
# 这里测试数据为200天的一组股票
stock_day = pd.read_csv("stock_day.csv")
# 简单移动平均线
stock_day['close'][:200].rolling(5).mean().plot() # rolling(天数)
# 指数平滑移动平均线
stock_day["close"].ewm(span=10).mean().plot() # span(天数)
# 方差
stock_day['close'][:200].rolling(10).var().plot()
# 标准差
stock_day['close'][:200].rolling(10).std().plot()
# 移动相关系数
stock_day['close'][:200].rolling(10).corr().plot()
# 各个数据关系散点图
frame = stock_day[['open','volume', 'ma20', 'p_change', 'turnover']]
pd.plotting.scatter_matrix(frame) # frame是需要进行对比的字段
以上就是我自己在操作过程中常用的API,具体API详见pandas说明文档: https://pandas.pydata.org/pandas-docs/version/0.23.0/generated/pandas.plotting.scatter_matrix.html?highlight=scatter_matrix