pandas如何统计均线、移动平均线的方法rolling总结

参考别人的:https://blog.csdn.net/The_Time_Runner/article/details/84101525 

import pandas as pd
import numpy as np

print(type(np.random.randint(1, 100, size=50)))

df = pd.DataFrame([np.random.randint(1, 10, size=4),
                   np.random.randint(1, 10, size=4),
                   np.random.randint(1, 10, size=4),
                   np.random.randint(1, 10, size=4),
                   np.random.randint(1, 10, size=4),
                   np.random.randint(1, 10, size=4)], columns=["first", "second", "third", "four"])

print(df)


# 计算5个窗口位置的平均线【如果查询的是day日期数据,那么这里等价于2日均线】
print(df["first"].rolling(2).mean())

print("--------------------")

# 计算5个窗口位置的移动平均线【如果查询的是day日期数据,那么这里等价于2日移动均线】
print(df["first"].rolling(2).mean().shift(-1))

 

<think>好的,我现在需要帮助用户解决如何使用pandas-ta库计算移动平均线的问题。用户已经提到了他们想用pandas-ta,并且需要示例代码。首先,我需要回忆一下pandas-ta的基本用法,以及如何正确导入和调用MA指标。 首先,用户可能已经了解了一些其他库,比如TA-Lib,但这里需要转向pandas-ta。可能需要先确认用户是否已经正确安装了pandas-ta库,如果没有,可能需要给出安装命令,比如pip install pandas-ta。不过用户没有提到安装问题,所以可能直接进入使用步骤。 接下来,我需要构造一个示例代码。根据引用中的例子,比如引用[2]中的简单移动平均线使用rolling和mean,而引用[4]中的KAMA是使用talib的KAMA函数。但用户现在要用pandas-ta,所以需要转换一下思路。pandas-ta的语法可能类似于ta.sma(close, length=period)。 然后,示例代码的结构可能包括导入库、生成示例数据、计算MA指标,并展示结果。需要确保列名正确,比如收盘价可能命名为'Close'。然后,用pandas-ta的SMA函数来计算,比如使用df.ta.sma()或者调用单独的模块。 还需要注意数据格式,比如pandas-ta通常需要数据是DataFrame格式,并且列名符合要求。例如,收盘价列可能需要命名为'close',如果用户的列名是大写的'Close',可能需要调整,或者pandas-ta可能不区分大小写?需要确认这一点,可能建议用户统一使用小写列名以避免错误。 另外,用户可能需要不同周期的MA,比如5日、20日,所以在示例中可以展示如何计算多个周期,并添加到DataFrame中。同时,可能需要展示如何绘制图表,如引用[4]中的例子,使用matplotlib来绘制均线和收盘价曲线。 还需要考虑异常处理,比如数据长度是否足够计算所选的周期。例如,计算20日MA需要至少20个数据点,否则结果会有NaN。在示例中生成足够的数据,比如30天的随机数据,这样前19天会有NaN,之后才有值。 然后,检查引用中的其他内容是否有帮助。例如,引用[3]提到了MACD指标,但用户的问题是关于MA,所以暂时不需要涉及。引用[5]是关于数据预处理,可能无关,但需要确保示例中的数据生成正确,比如使用随机数生成收盘价序列。 最后,确保代码示例正确无误,语法正确,特别是pandas-ta的调用方式。可能需要查阅pandas-ta的文档确认函数名称和参数,例如是否使用sma()函数,参数是否是length或timeperiod。根据常见用法,可能是length参数,例如ta.sma(close, length=20)。 总结步骤: 1. 导入必要的库,包括pandas_ta作为ta,pandas,numpy生成数据。 2. 创建示例数据,比如30天的收盘价,用随机数生成。 3. 使用pandas-ta的sma函数计算不同周期的MA。 4. 将结果添加到DataFrame。 5. 展示结果的前几行,显示NaN和有效值。 6. 绘制图表,比较收盘价和MA。 7. 可能提到其他MA类型,如EMA,并给出代码示例。 在问题部分,需要生成相关问题,如不同MA类型、处理数据不足、优化方法、结合其他指标等。 现在检查是否有遗漏,比如安装步骤是否需要,用户可能已经安装了库,但最好在回答中包含安装命令,方便未安装的用户。此外,确保代码中的列名正确,比如'close'而不是'Close',因为pandas-ta可能默认小写,避免出错。 例如,在代码中,用户的数据列如果是'Close',可能需要重命名为'close',或者查看pandas-ta是否接受其他列名。如果库函数默认使用'close'列,可能需要明确指定参数,比如在调用sma时指定close=df['Close'],或者建议用户将列名改为小写。 可能需要在示例中将列名设为小写,或者在代码中指定参数,例如: df.ta.sma(length=5, append=True) 但根据pandas-ta的文档,当使用df.ta.sma()时,默认会寻找'close'列,所以如果用户的列名是'Close',可能需要调整。因此,在示例中生成数据时,列名应设为'close',或者使用参数指定。 例如,正确的做法可能是: df['SMA_5'] = df.ta.sma(length=5, close=df['Close']) 或者更简单的,如果列名是'close',直接使用: df.ta.sma(length=5, append=True) 因此,在示例中,确保列名正确是关键。可能需要建议用户确认列名,或者在代码中显式指定close参数。 综合这些思考,现在构建示例代码,确保正确性,并解释每个步骤。</think>### 使用 pandas-ta 计算移动平均线的技术实现 #### 1. 环境准备 首先安装 `pandas-ta` 库: ```bash pip install pandas-ta ``` #### 2. 基础实现步骤 ```python import pandas as pd import numpy as np import pandas_ta as ta # 导入库并简写为ta # 生成示例数据(30日随机收盘价) np.random.seed(42) prices = np.random.normal(loc=100, scale=5, size=30) df = pd.DataFrame(prices, columns=['close']) # 注意列名必须为小写'close' # 计算5日和20日简单移动平均线(SMA) df.ta.sma(length=5, append=True) # 结果列名为'SMA_5' df.ta.sma(length=20, append=True) # 结果列名为'SMA_20' # 查看前10行数据(观察NaN填充逻辑) print(df.head(10)) ``` #### 3. 代码解析 1. **数据格式要求**:`pandas-ta` 默认通过列名 `close` 识别收盘价数据,若列名为大写需修改为小写[^3]。 2. **函数调用**:`df.ta.sma(length=N)` 表示计算N日移动平均线,`append=True` 将结果直接追加到原DataFrame。 3. **NaN逻辑**:若计算20日均线,前19行会显示 `NaN`,第20行起为有效值[^2]。 #### 4. 可视化验证 ```python import matplotlib.pyplot as plt # 绘制收盘价与均线对比 df[['close', 'SMA_5', 'SMA_20']].plot(figsize=(12,6)) plt.title('收盘价与移动平均线对比') plt.xlabel('时间序列') plt.ylabel('价格') plt.grid(True) plt.legend(['收盘价', '5日均线', '20日均线']) plt.show() ``` #### 5. 扩展应用:其他均线类型 ```python # 指数移动平均线(EMA) df.ta.ema(length=10, append=True) # 列名为'EMA_10' # 加权移动平均线(WMA) df.ta.wma(length=10, append=True) # 列名为'WMA_10' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值