一、IBM 网安系列视频
1. Threat Hunting 威胁捕捉
IBM系列入坑小视频:
IBM Cybersecurity Threat Hunting Explained_哔哩哔哩_bilibili
Threat Hunting 威胁捕捉主要用途是在攻击发生前的发现黑客的异常行为,也可以用于告警失效时给出异常信息以供分析,一般根据以下四种信息来捕捉异常:IoC(Indicator of Compromise), IoA(Indicator of Attack), Intel 网上情报,VA 漏洞分析
分析人员要做的就是把这四类信息里的几项串连起来,发现黑客活动的迹象。
相关的工具有:XDR来监测和响应, SIEM搜集设备日志等信息,UBA(User Behavior Analysis)
这三种工具都可以融入AI的成分
2. XDR
XDR (Extended Detection & Response) Explained_哔哩哔哩_bilibili
有不同种定义,除了Detection & Response之外,可能包含threat hunting(攻击前),investigation(攻击后),工具简洁化,减少无用告警,减少SOC运行成本
图里面SIEM和EDR, NDR是并列的,实际上EDR, NDR数据也可以输入到SIEM, 这里只是一个例子。
主要功能如下:
(1) Correlate:
把SIEM, EDR, NDR这些信息关联起来
附加工具:ASM - Attack Surface Management
(2) Analyze: 可能会用到AI和UBA,AI可以用来预测攻击影响,UBA发现异常用户行为
附加工具:VM - Vulnerability Management
(3) Investigate(reactive): 谁在攻击,攻击已造成的影响
Threat Hunting(proactive): 发现可能的攻击发生前的蛛丝马迹
(5) Respond - SOAR:案例事件管理,比如manage cases, figure out who is doing what to whom, what actions do I need to take to recovery the system, 可能会有一个dynamic playbook.
3. AI in Cybersecurity
AI in Cybersecurity_哔哩哔哩_bilibili
AI四种主要应用:
(1) investigate
使用知识图谱(knowledge graph, a way of representing information about the physical and logical world, but representing it as a data structure
举例:图上一个URL对应的File Path 检测出有病毒,我们可以关联找到可能受这个病毒影响的用户
(2) identify
举例:波浪线代表log记录,从大量log里找出相关联的,不如一个高权限用户新建了一个新用户,接着用该新用户账号复制了数据库,接着又删除了该用户。可以使用time decay function、AI。
(3) report
(4) research
chatbot. know more about the system, or a particular malware
未完待续......