CINTA作业六

这篇博客探讨了群论的基本性质,包括子群、等价关系以及群的乘法逆元。证明了在群G中,若H是G的子群,那么g1H=g2H当且仅当g1-1g2属于H。进一步讨论了当[H:G]=2时,gH=Hg的性质。此外,还展示了欧拉定理在模运算下的证明,特别是在素数p下乘法群的情况。
摘要由CSDN通过智能技术生成
  1. 设G是群,H是G的子群。任取g1,g2属于G,则g1H = g2H当且仅当g1-1g2属于 H。
    充分性
    由于g1H = g2H,即存在h1,h2属于H,使g1h1 = g2h2,由消去律可得g1-1g2 = h1h2-1,则g-1g2属于H。
    必要性
    由于g1-1g2属于H,以及群的封闭性所以g1-1,g2属于H,有群公理又易得g^-1的乘法逆元g属于H,故g1H = g2H。
  2. 如果群H是群G的子群,且[G:H] = 2,请证明gH = Hg。
    如果g属于H,gH = Hg易证。
    如果g不属于H,则gH不属于H,Hg不属于H,又[G:H] = 2,所以gH,Hg都不属于H,故gH,Hg都属于G-H,即gH = Hg。
  3. 如果群H是群G的真子群,即存在g属于G但是g不属于H。请证明|H|<=|G|/2。
    H是G的真子群,故[G:H]>=2,又[G:H] = |G|/|H|,所以|H|<=|G|/2。
  4. 证明:设群G为1~p-1%p下的乘法群,p为素数。
    首先证明G是一个群
    封闭性,对于任意g1,g2属于G,因为1<=g1g2%p <p,满足封闭性。
    由于1g=g1,存在单位元1。
    证明存在gg-1 ≡1(mod p),p为质数,gcd(n,p)=1,故必存在g-1使gg-1 ≡1(mod p)成立。
    对任意g属于G有ord(a)|p-1,则存在nord(a)= p-1,n属于整数,故所以aord(a)*n = ap-1,由于所以ap-1≡ 1(mod p)。
    证明欧拉定理
    设群G为1~n-1%n下的乘法群,n为整数。
    首先证明G是一个群
    封闭性,对于任意g1,g2属于G,因为1<=g1g2%n <n,满足封闭性。
    由于1g=g1,存在单位元1。
    证明存在gg-1 ≡1(mod p),p为质数,gcd(n,p)=1,故必存在g-1使gg-1 ≡1(mod p)成立。
    对任意g属于G,由拉格朗日定理,有ord(a)|phi(n),则存在kord(a)=n-1,s属于整数,故所以aord(a)*k = an-1,由于所以an-1≡ 1(mod n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值