同构:若从群G到群F上,存在保持群乘法规律不变的一一满映射
,称为G与F同构。记作
。该映射
称为同构映射。
这里的“保持群乘法规律不变”,是指两个元素的群乘的映射等于这两个元素的映射的群乘。很显然,同构关系具有对称性。同构的两个群结构完全一样。(所以叫同构嘛)。
可以列举几个教材上的例子,它们是比较严谨的:空间反演群
与二阶循环群
同构;
群与三阶置换群同构,(我在介绍
群时说“如此一来,不难看出,
群其实是一个3阶置换群”,其实是它们同构);群G的两个互相共轭的子群H和K同构。
同态:若从群G到群F上,存在保持群乘法规律不变的满映射
,称为G与F同构。记作
。该映射
称为同态映射。
同态与同构的区别是不再是双射,而是满射。这意味着G的集合会比F的“大”一些,(只在同构成立时一样大);同时,同态的关系不再具有对称性。
同态核:设群G与群F同态,映射到F到单位元的G中的元素集合称为同态核。
同态核定理:若群G与群F同态,则同态核H是G的不变子群,且商群G/H与F同构。
证明:
先证H是G的子群。
由于群乘法规则不变,,即,有,即证封闭性;
结合律自动成立,单位元也一定在H中;
设在同态核中,它在群G中的逆元映射到F中的,
由,
又,
则有,即也在同态核中,即证逆元的存在。
于是,证得H是G的子群。
再证H是G的不变子群。
对任意的,,即证的同类元素均在同态核内。
最后证G/H