群同态基本定理证明_群论笔记-群的基本概念(3)

群论中,同构是保持群结构不变的一一映射,而同态是满射但不必一一对应。同态核是映射到单位元的元素集合,同态核定理表明它是一个不变子群且与商群同构。自同构映射是群到自身的同构映射,内自同构是由群元生成的自同构。凯莱定理将群与变换群联系起来,等价关系具有对称性和传递性,轨道和不变子集是重要的概念,迷向子群用于分析特殊元素在变换下的行为。
摘要由CSDN通过智能技术生成

31317dbe2504a69251431859b96bd32e.png

同构:若从群G到群F上,存在保持群乘法规律不变的一一满映射

,称为G与F同构。记作
。该映射
称为同构映射。

这里的“保持群乘法规律不变”,是指两个元素的群乘的映射等于这两个元素的映射的群乘。很显然,同构关系具有对称性。同构的两个群结构完全一样。(所以叫构嘛)。

可以列举几个教材上的例子,它们是比较严谨的:空间反演群

与二阶循环群
同构;
群与三阶置换群同构,(我在介绍
群时说“如此一来,不难看出,
群其实是一个3阶置换群”,其实是它们同构);群G的两个互相共轭的子群H和K同构。

同态:若从群G到群F上,存在保持群乘法规律不变的满映射

,称为G与F同构。记作
。该映射
称为同态映射。

同态与同构的区别是不再是双射,而是满射。这意味着G的集合会比F的“大”一些,(只在同构成立时一样大);同时,同态的关系不再具有对称性。

同态核:设群G与群F同态,映射到F到单位元的G中的元素集合称为同态核。

同态核定理:若群G与群F同态,则同态核H是G的不变子群,且商群G/H与F同构。

证明:
先证H是G的子群。
由于群乘法规则不变,
,即
,有
,即证封闭性;

结合律自动成立,单位元也一定在H中;
在同态核中,它在群G中的逆元
映射到F中的



则有
,即
也在同态核中,即证逆元的存在。

于是,证得H是G的子群。
再证H是G的不变子群。
对任意的
,即证
的同类元素均在同态核内。

最后证G/H
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值