【解题报告】洛谷 P2571 [SCOI2010]传送带

【解题报告】洛谷 P2571 [SCOI2010]传送带

今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难。
博客园链接
题目链接

题目描述

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

输入输出格式

输入格式:

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By

第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy

第三行是3个整数,分别是P,Q,R

输出格式:

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

输入输出样例

输入样例#1:

0 0 0 100
100 0 100 100
2 2 1

输出样例#1:

136.60

说明

对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000

         1<=P,Q,R<=10

下面是我的分析过程

分析过程

首先,如图

在这里插入图片描述

  1. 通过观察题目,我们可以发现,我们行走的路径一定是先在AB边上走,然后走下AB边,走向CD边,然后在CD边上走。(当然,有可能直接在A点就走下了AB边,也有可能直接从D点上了CD边,这里我们同样看作是先走下AB边,然后走上AB边)所以如果我们在AB边取一个点E,在CD边取一个点F,那么,不同的路径就可以用不同的E点和F点唯一表示,即每一个数对(E,F)都唯一对应一条路径(PS:E点可以和A或B重合,F点可以和C或者D重合)所以,我们可以想到一个朴素的算法:枚举E点和F点。但是这种算法明显是太暴力了,不可能通过的。
  2. 我们通过仔细思考,可以这么想:假如我现在的E点是已经确定好是哪个点的了,那么我们的问题就可以转换为:已知一条传送带,以及你在传送带上面的速度和地面上的速度,并且知道起点的准确位置,求到达终点的最短时间。
    假如题目变成了这个样子,那么我们会发现,随着F点从C点到D点移动,这个总的时间应该是先递减后递增的。由于是一个单峰函数,所以我们可以用三分来做。
  3. 那么,我们现在的问题就是,这个E点也是移动的。但是我们现在能够做到对于AB边上的每一个点E,都能算出E点固定时的最短时间。所以,相比刚刚开始的同时枚举两个点E和F,现在只需要枚举一下E点就可以了。即:枚举E点的位置,然后对于每一个E点,对F点进行三分,找出每一个E点对应的最小路径的F点是哪一个。
  4. 但是,这个算法好像还是不太好,因为E点的枚举还是很麻烦的,复杂度一样很高。我们可以大胆猜想,或许E点的取值范围也是可以用三分法来做的!但是我还没有想到证明方法,也只是胡乱瞎猜。不过我猜对了。我还没有找到证明,找到证明之后我会再贴链接或者干啥的。
  5. 所以,我们现在可以得出一个能够在规定时间得出答案的算法:先三分E点的位置,对于每一个E点的位置,再三分F点的位置。
    (细节注意:由于答案要保留小数点后两位,而地图的最大大小为1000,经过测试,1000乘于2/3大概乘那么30次就可以变得比0.01小,所以我们的三分大概只需要循环30次就可以了。不过我为了安全,循环了40次,反正没差多少。因此,E点需要三分40次,对于每一个E点,需要三分F点40*2次,大概就320次的样子。)

事实上,这道题除了用三分的做法之外,好像还有什么其他做法,比如模拟退火算法, 但是我还没有学过。

AC代码如下

#include<cstdio>
#include<cmath>
using namespace std;
struct point
{
	double x,y;
	point()
	{
		x=y=0;
	}
};
double m_abs(double a)
{
	return a<0?-a:a;
}
int main()
{
	point a,b,c,d;
	scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&d.x,&d.y);
	double p,q,r;
	scanf("%lf%lf%lf",&p,&q,&r);
	double result=100000000.0;
	point S1=a,S2=b,E1=c,E2=d;
	for(int i=1;i<=40;i++)
	{
		point s1,s2;
		s1.x=S1.x+(S2.x-S1.x)/3.0;
		s1.y=S1.y+(S2.y-S1.y)/3.0;
		s2.x=S2.x-(S2.x-S1.x)/3.0;
		s2.y=S2.y-(S2.y-S1.y)/3.0;
		double T1,T2;
		double X,Y;
		X=m_abs(a.x-s1.x);
		Y=m_abs(a.y-s1.y);
		T1=sqrt(X*X+Y*Y)/p;
		X=m_abs(a.x-s2.x);
		Y=m_abs(a.y-s2.y);
		T2=sqrt(X*X+Y*Y)/p;
		E1=c;E2=d;
		double T3=10000000.0,T4=100000000.0;
		for(int j=1;j<=40;j++)
		{
			double t1,t2;
			point e1,e2;
			e1.x=E1.x+(E2.x-E1.x)/3.0;
			e1.y=E1.y+(E2.y-E1.y)/3.0;
			e2.x=E2.x-(E2.x-E1.x)/3.0;
			e2.y=E2.y-(E2.y-E1.y)/3.0;
			X=m_abs(s1.x-e1.x);
			Y=m_abs(s1.y-e1.y);
			t1=sqrt(X*X+Y*Y)/r;
			X=m_abs(s1.x-e2.x);
			Y=m_abs(s1.y-e2.y);
			t2=sqrt(X*X+Y*Y)/r;
			X=m_abs(d.x-e1.x);
			Y=m_abs(d.y-e1.y);
			t1+=sqrt(X*X+Y*Y)/q;
			X=m_abs(d.x-e2.x);
			Y=m_abs(d.y-e2.y);
			t2+=sqrt(X*X+Y*Y)/q;
			if(t1>=t2)
			{
				E1=e1;
				T3=t2<T3?t2:T3;
			}
			else
			{
				E2=e2;
				T3=t1<T3?t1:T3;
			}
		}
		E1=c;E2=d;
		for(int j=1;j<=40;j++)
		{
			double t1,t2;
			point e1,e2;
			e1.x=E1.x+(E2.x-E1.x)/3.0;
			e1.y=E1.y+(E2.y-E1.y)/3.0;
			e2.x=E2.x-(E2.x-E1.x)/3.0;
			e2.y=E2.y-(E2.y-E1.y)/3.0;
			X=m_abs(s2.x-e1.x);
			Y=m_abs(s2.y-e1.y);
			t1=sqrt(X*X+Y*Y)/r;
			X=m_abs(s2.x-e2.x);
			Y=m_abs(s2.y-e2.y);
			t2=sqrt(X*X+Y*Y)/r;
			X=m_abs(d.x-e1.x);
			Y=m_abs(d.y-e1.y);
			t1+=sqrt(X*X+Y*Y)/q;
			X=m_abs(d.x-e2.x);
			Y=m_abs(d.y-e2.y);
			t2+=sqrt(X*X+Y*Y)/q;
			if(t1>=t2)
			{
				E1=e1;
				T4=t2<T4?t2:T4;
			}
			else
			{
				E2=e2;
				T4=t1<T4?t1:T4;
			}
		}
		T1+=T3;
		T2+=T4;
		if(T1>=T2)
		{
			S1=s1;
			result=T2<result?T2:result;
		}
		else
		{
			S2=s2;
			result=T1<result?T1:result;
		}
	}
	printf("%.2f\n",result);
	return 0;
}

话说这个还是我第一次使用三分呢,以前都没有用过。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值