【解题报告】洛谷 P2571 [SCOI2010]传送带
今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难。
博客园链接
题目链接
题目描述
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
输入输出格式
输入格式:
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By
第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy
第三行是3个整数,分别是P,Q,R
输出格式:
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
输入输出样例
输入样例#1:
0 0 0 100
100 0 100 100
2 2 1
输出样例#1:
136.60
说明
对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
下面是我的分析过程
分析过程
首先,如图
- 通过观察题目,我们可以发现,我们行走的路径一定是先在AB边上走,然后走下AB边,走向CD边,然后在CD边上走。(当然,有可能直接在A点就走下了AB边,也有可能直接从D点上了CD边,这里我们同样看作是先走下AB边,然后走上AB边)所以如果我们在AB边取一个点E,在CD边取一个点F,那么,不同的路径就可以用不同的E点和F点唯一表示,即每一个数对(E,F)都唯一对应一条路径(PS:E点可以和A或B重合,F点可以和C或者D重合)所以,我们可以想到一个朴素的算法:枚举E点和F点。但是这种算法明显是太暴力了,不可能通过的。
- 我们通过仔细思考,可以这么想:假如我现在的E点是已经确定好是哪个点的了,那么我们的问题就可以转换为:已知一条传送带,以及你在传送带上面的速度和地面上的速度,并且知道起点的准确位置,求到达终点的最短时间。
假如题目变成了这个样子,那么我们会发现,随着F点从C点到D点移动,这个总的时间应该是先递减后递增的。由于是一个单峰函数,所以我们可以用三分来做。 - 那么,我们现在的问题就是,这个E点也是移动的。但是我们现在能够做到对于AB边上的每一个点E,都能算出E点固定时的最短时间。所以,相比刚刚开始的同时枚举两个点E和F,现在只需要枚举一下E点就可以了。即:枚举E点的位置,然后对于每一个E点,对F点进行三分,找出每一个E点对应的最小路径的F点是哪一个。
- 但是,这个算法好像还是不太好,因为E点的枚举还是很麻烦的,复杂度一样很高。我们可以大胆猜想,或许E点的取值范围也是可以用三分法来做的!但是我还没有想到证明方法,也只是胡乱瞎猜。不过我猜对了。我还没有找到证明,找到证明之后我会再贴链接或者干啥的。
- 所以,我们现在可以得出一个能够在规定时间得出答案的算法:先三分E点的位置,对于每一个E点的位置,再三分F点的位置。
(细节注意:由于答案要保留小数点后两位,而地图的最大大小为1000,经过测试,1000乘于2/3大概乘那么30次就可以变得比0.01小,所以我们的三分大概只需要循环30次就可以了。不过我为了安全,循环了40次,反正没差多少。因此,E点需要三分40次,对于每一个E点,需要三分F点40*2次,大概就320次的样子。)
事实上,这道题除了用三分的做法之外,好像还有什么其他做法,比如模拟退火算法, 但是我还没有学过。
AC代码如下
#include<cstdio>
#include<cmath>
using namespace std;
struct point
{
double x,y;
point()
{
x=y=0;
}
};
double m_abs(double a)
{
return a<0?-a:a;
}
int main()
{
point a,b,c,d;
scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&d.x,&d.y);
double p,q,r;
scanf("%lf%lf%lf",&p,&q,&r);
double result=100000000.0;
point S1=a,S2=b,E1=c,E2=d;
for(int i=1;i<=40;i++)
{
point s1,s2;
s1.x=S1.x+(S2.x-S1.x)/3.0;
s1.y=S1.y+(S2.y-S1.y)/3.0;
s2.x=S2.x-(S2.x-S1.x)/3.0;
s2.y=S2.y-(S2.y-S1.y)/3.0;
double T1,T2;
double X,Y;
X=m_abs(a.x-s1.x);
Y=m_abs(a.y-s1.y);
T1=sqrt(X*X+Y*Y)/p;
X=m_abs(a.x-s2.x);
Y=m_abs(a.y-s2.y);
T2=sqrt(X*X+Y*Y)/p;
E1=c;E2=d;
double T3=10000000.0,T4=100000000.0;
for(int j=1;j<=40;j++)
{
double t1,t2;
point e1,e2;
e1.x=E1.x+(E2.x-E1.x)/3.0;
e1.y=E1.y+(E2.y-E1.y)/3.0;
e2.x=E2.x-(E2.x-E1.x)/3.0;
e2.y=E2.y-(E2.y-E1.y)/3.0;
X=m_abs(s1.x-e1.x);
Y=m_abs(s1.y-e1.y);
t1=sqrt(X*X+Y*Y)/r;
X=m_abs(s1.x-e2.x);
Y=m_abs(s1.y-e2.y);
t2=sqrt(X*X+Y*Y)/r;
X=m_abs(d.x-e1.x);
Y=m_abs(d.y-e1.y);
t1+=sqrt(X*X+Y*Y)/q;
X=m_abs(d.x-e2.x);
Y=m_abs(d.y-e2.y);
t2+=sqrt(X*X+Y*Y)/q;
if(t1>=t2)
{
E1=e1;
T3=t2<T3?t2:T3;
}
else
{
E2=e2;
T3=t1<T3?t1:T3;
}
}
E1=c;E2=d;
for(int j=1;j<=40;j++)
{
double t1,t2;
point e1,e2;
e1.x=E1.x+(E2.x-E1.x)/3.0;
e1.y=E1.y+(E2.y-E1.y)/3.0;
e2.x=E2.x-(E2.x-E1.x)/3.0;
e2.y=E2.y-(E2.y-E1.y)/3.0;
X=m_abs(s2.x-e1.x);
Y=m_abs(s2.y-e1.y);
t1=sqrt(X*X+Y*Y)/r;
X=m_abs(s2.x-e2.x);
Y=m_abs(s2.y-e2.y);
t2=sqrt(X*X+Y*Y)/r;
X=m_abs(d.x-e1.x);
Y=m_abs(d.y-e1.y);
t1+=sqrt(X*X+Y*Y)/q;
X=m_abs(d.x-e2.x);
Y=m_abs(d.y-e2.y);
t2+=sqrt(X*X+Y*Y)/q;
if(t1>=t2)
{
E1=e1;
T4=t2<T4?t2:T4;
}
else
{
E2=e2;
T4=t1<T4?t1:T4;
}
}
T1+=T3;
T2+=T4;
if(T1>=T2)
{
S1=s1;
result=T2<result?T2:result;
}
else
{
S2=s2;
result=T1<result?T1:result;
}
}
printf("%.2f\n",result);
return 0;
}
话说这个还是我第一次使用三分呢,以前都没有用过。