Dima came to the horse land. There are n horses living in the land. Each horse in the horse land has several enemies (enmity is a symmetric relationship). The horse land isn't very hostile, so the number of enemies of each horse is at most 3.
Right now the horse land is going through an election campaign. So the horses trusted Dima to split them into two parts. At that the horses want the following condition to hold: a horse shouldn't have more than one enemy in its party.
Help Dima split the horses into parties. Note that one of the parties can turn out to be empty.
The first line contains two integers n, m — the number of horses in the horse land and the number of enemy pairs.
Next m lines define the enemy pairs. The i-th line contains integers ai, bi (1 ≤ ai, bi ≤ n; ai ≠ bi), which mean that horse ai is the enemy of horse bi.
Consider the horses indexed in some way from 1 to n. It is guaranteed that each horse has at most three enemies. No pair of enemies occurs more than once in the input.
Print a line, consisting of n characters: the i-th character of the line must equal "0", if the horse number i needs to go to the first party, otherwise this character should equal "1".
If there isn't a way to divide the horses as required, print -1.
3 3 1 2 3 2 3 1
100
2 1 2 1
00
10 6 1 2 1 3 1 4 2 3 2 4 3 4
0110000000
因为每个人最多有3个敌人,所以这个题必然有解。假设某个人有3个敌人,那就把包括他自己的4个人分成两组。就算那两个人是互相敌对的也可以把他们放在一组里。
用dfs暴力分组。如果冲突就换一组。
#include <cstdio>
#include <vector>
using namespace std;
int N,M;
bool g[300005];
vector<int> Son[300005];
void tow_SAT(int x)
{
//验证当前状态是否符合要求
int enemy=0;
for(int i=0;i<Son[x].size();i++)
if(g[x]==g[Son[x][i]]) enemy++;
//换组,和自己矛盾的人重新安排
if(enemy>1)
{
g[x]=!g[x];
for(int i=0;i<Son[x].size();i++)
if(g[x]==g[Son[x][i]]) tow_SAT(Son[x][i]);
}
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=1;i<=M;i++)
{
int x,y; scanf("%d%d",&x,&y);
Son[x].push_back(y); Son[y].push_back(x);
}
for(int i=1;i<=N;i++) tow_SAT(i);
for(int i=1;i<=N;i++) printf("%d",g[i]);
//while(1);
return 0;
}