n皇后问题
问题描述:
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。
输入皇后数n,输出解,并且打印出n个皇后的坐标。
// Queen.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
#include<stdlib.h>
template<class Type>
class Queen
{
public:
Queen(Type*, Type);
template<class Ty>
friend void nQueen(Ty *,Ty);
void Backtrack(void);
private:
bool Place(Type n);
void Backtrack(Type t);
Type* x,//x是这个当前解
n;
};
template<class Type>
void Queen<Type>::Backtrack(Type t)//这是递归的解法
{
if (t > n)
{
for (int i = 1; i <= n; i++)
std::cout << x[i] << "\t";
std::cout << std::endl;
}
else
{
for (int i = 1; i <= n; i++)
{
x[t] = i;
if (Place(t))//判断t保存的值是不是能不能被使用
{
Backtrack(t + 1);
}
}
}
}
template<class Type>
bool Queen<Type>::Place(Type n)
{
for (int i = 1; i < n; i++)
{
if ((x[n] == x[i]) || abs(x[n] - x[i]) == abs(n - i))
return false;
}
return true;
}
template<class Ty>
void nQueen(Ty* x, Ty n)
{
Queen<Ty> queen;
queen.x = x;
queen.n = n;
queen.Backtrack(1);
}
template<class Type>
void Queen<Type>::Backtrack(void)//迭代递归法
{
int t = 1;
x[1] = 0;
while (t>0)
{
x[t] += 1;
while (x[t]<=n&&!(Place(t)))//寻找x[t]符合的数
x[t] += 1;
if (x[t] <= n)//当x[t]小于n时
{
if (t == n)
{
for (int i = 1; i <= n; i++)
std::cout << x[i] << "\t";
std::cout << std::endl;
}
else
{
t++;
x[t] = 0;
}
}
else
{
t--;
}
}
}
template<class Type>
Queen<Type>::Queen(Type* x, Type n)
{
this->x = x;
this->n = n;
}
int main()
{
int *x;
int n=8;
x = new int[9];
Queen<int>* queen = new Queen<int>(x, n);
queen->Backtrack();
//nQueen<int>(x,n);
return 0;
}