最大团问题
问题描述
给定无向图G=(V, E),其中V是非空集合,称为顶点集;E是V中元素构成的无序二元组的集合,称为边集,无向图中的边均是顶点的无序对,无序对常用圆括号“( )”表示。如果U∈V,且对任意两个顶点u,v∈U有(u, v)∈E,则称U是G的完全子图(完全图G就是指图G的每个顶点之间都有连边)。G的完全子图U是G的团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团。
如果U∈V且对任意u,v∈U有(u, v)不属于E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集。
对于任一无向图G=(V, E),其补图G'=(V', E')定义为:V'=V,且(u, v)∈E'当且仅当(u, v)∈E。
如果U是G的完全子图,则它也是G'的空子图,反之亦然。因此,G的团与G'的独立集之间存在一一对应的关系。特殊地,U是G的最大团当且仅当U是G'的最大独立集。
例:如图所示,给定无向图G={V, E},其中V={1,2,3,4,5},E={(1,2), (1,4), (1,5),(2,3), (2,5), (3,5), (4,5)}。根据最大团(MCP)定义,子集{1,2}是图G的一个大小为2的完全子图,但不是一个团,因为它包含于G的更大的完全子图{1,2,5}之中。{1,2,5}是G的一个最大团。{1,4,5}和{2,3,5}也是G的最大团。右侧图是无向图G的补图G'。根据最大独立集定义,{2,4}是G的一个空子图,同时也是G的一个最大独立集。虽然{1,2}也是G'的空子图,但它不是G'的独立集,因为它包含在G'的空子图{1,2,5}中。{1,2,5}是G'的最大独立集。{1,4,5}和{2,3,5}也是G'的最大独立集。
算法设计
无向图G的最大团和最大独立集问题都可以用回溯法在O(n2^n)的时间内解决。图G的最大团和最大独立集问题都可以看做是图G的顶点集V的子集选取问题。因此可以用子集树来表示问题的解空间。首先设最大团为一个空团,往其中加入一个顶点,然后依次考虑每个顶点,查看该顶点加入团之后仍然构成一个团,如果可以,考虑将该顶点加入团或者舍弃两种情况,如果不行,直接舍弃,然后递归判断下一顶点。对于无连接或者直接舍弃两种情况,在递归前,可采用剪枝策略来避免无效搜索。为了判断当前顶点加入团之后是否仍是一个团,只需要考虑该顶点和团中顶点是否都有连接。程序中采用了一个比较简单的剪枝策略,即如果剩余未考虑的顶点数加上团中顶点数不大于当前解的顶点数,可停止继续深度搜索,否则继续深度递归当搜索到一个叶结点时,即可停止搜索,此时更新最优解和最优值。
// Clique.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
using namespace std;
template<class Type>
class Clique
{
friend void MaxClique(int**, int);
private:
void Backtrack(int);
Type** a,//G的连接图
n,//顶点数量
* x,//最优解
cn,//当前顶点数
bestn;//当前最优顶点数
};
void MaxClique(int** a, int n)
{
Clique<int> clique;
clique.a = a;
clique.cn = 0;
clique.n = n;
clique.x = new int[n + 1];
clique.bestn = 0;
clique.Backtrack(1);
}
template<class Type>
void Clique<Type>::Backtrack(int t)
{
if (t > n)
{
if (bestn <= cn)
{
for (int i = 1; i <= 5; i++)
cout << x[i] << "\t";
cout << endl;
bestn = cn;
}
return;
}
bool ok = true;
for(int i=1;i<t;i++)
if (x[i] && a[i][t] == 0)
{
ok = false;
break;
}
if (ok)
{
x[t] = 1;
cn++;
Backtrack(t + 1);
cn--;
x[t] = 0;
}
if (cn + n - t >= bestn)
{
x[t] = 0;
Backtrack(t + 1);
}
}
int main()
{
int** a;
a = new int* [6];
for (int i = 0; i < 6; i++)
a[i] = new int[6];
a[0][0] = 0, a[0][1] = 0, a[0][2] = 0, a[0][3] = 0, a[0][4] = 0, a[0][5] = 0;
a[1][0] = 0, a[1][1] = 0, a[1][2] = 1, a[1][3] = 0, a[1][4] = 1, a[1][5] = 1;
a[2][0] = 0, a[2][1] = 1, a[2][2] = 0, a[2][3] = 1, a[2][4] = 0, a[2][5] = 1;
a[3][0] = 0, a[3][1] = 0, a[3][2] = 1, a[3][3] = 0, a[3][4] = 0, a[3][5] = 1;
a[4][0] = 0, a[4][1] = 1, a[4][2] = 0, a[4][3] = 0, a[4][4] = 0, a[4][5] = 1;
a[5][0] = 0, a[5][1] = 1, a[5][2] = 1, a[5][3] = 1, a[5][4] = 1, a[5][5] = 0;
MaxClique(a, 5);
return 0;
}