零基础入门CV赛事—街景字符编码识别—task1赛题理解

本文介绍了零基础入门CV赛事—街景字符编码识别,详细讲解了数据集来源、数据标签、评测标准,并提供了标签数据读取方法。文章探讨了三种解题思路:定长字符识别、不定长字符识别以及检测再识别,旨在帮助参赛者掌握计算机视觉中的字符识别问题。
摘要由CSDN通过智能技术生成

街景字符编码识别

零基础入门CV赛事- 街景字符编码识别是Datawhale联合天池举办的CV入门学习赛,赛题以计算机视觉中字符识别为背景,要求选手预测真实场景下的字符识别,这是一个典型的字符识别问题。通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。

数据集

数据来源

赛题来源自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),并根据一定方式采样得到比赛数据集。

**数据集展示**
训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。

数据标签

对于训练数据每张图片将给出对于的编码标签,和具体的字符框的位置(训练集、测试集和验证集都给出字符位置),可用于模型训练:

Field Description
top 左上角坐标X
height 字符高度
left 左上角最表Y
width 字符宽度
label 字符编码

用[top,left]和[height,width]两组坐标就可以在图片中具体表示字符的位置和大小了。

评测标准

评价标准为准确率,选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标,结果越大越好,具体计算公式如下:
s c o r e = 编 码 识 别 正 确 的 数 量 测 试 集 图 片 数 量 ​ score=\frac{编码识别正确的数量}{测试集图片数量} ​ score

天池是一个著名的数据科学竞赛平台,而datawhale是一家致力于数据科学教育和社群建设的组织。街景字符编码识别是指通过计算机视觉技术,对街道场景中的字符进行自动识别和分类。 街景字符编码识别是一项重要的研究领域,对于提高交通安全、城市管理和智能驾驶技术都具有重要意义。街道场景中的字符包括道路标志、车牌号码、店铺招牌等。通过对这些字符进行准确的识别,可以辅助交通管理人员进行交通监管、道路规划和交通流量分析。同时,在智能驾驶领域,街景字符编码识别也是一项关键技术,可以帮助自动驾驶系统准确地识别理解道路上的各种标志和标识,为自动驾驶提供可靠的环境感知能力。 天池和datawhale联合举办街景字符编码识别竞赛,旨在吸引全球数据科学和计算机视觉领域的优秀人才,集思广益,共同推动该领域的研究和发展。通过这个竞赛,参赛选手可以使用各种机器学习和深度学习算法,基于提供的街景字符数据集,设计和训练模型,实现准确的字符编码识别。这个竞赛不仅有助于促进算法研发和技术创新,也为各参赛选手提供了一个学习、交流和展示自己技能的平台。 总之,天池datawhale街景字符编码识别是一个具有挑战性和实际应用需求的竞赛项目,旨在推动计算机视觉和智能交通领域的技术发展,同时也为数据科学爱好者提供了一个学习和展示自己能力的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值