Datawhale零基础入门CV赛事(街景字符编码识别)-Task1 赛题理解

本文介绍了Datawhale与天池联合举办的CV入门赛事——街景字符编码识别,赛题源于Google街景图像的门牌号数据集SVHN。通过理解赛题背景、数据集和解题思路,引导初学者进入计算机视觉领域。参赛者需预测真实场景中的字符,评价标准为准确率。解题策略包括数字检测与识别,建议使用如Keras等框架并参考开源代码进行初步尝试。
摘要由CSDN通过智能技术生成

2020.5.19

背景

零基础入门CV赛事- 街景字符编码识别是Datawhale联合天池举办的CV入门学习赛,赛题以计算机视觉中字符识别为背景,要求选手预测真实场景下的字符识别,这是一个典型的字符识别问题。通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。

学习目标

  • 理解赛题背景和赛题数据
  • 完成赛题报名和数据下载,理解赛题的解题思路

了解赛题

  • 赛题数据

赛题来源自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),点此进入链接,并根据一定方式采样得到比赛数据集。只能使用给定数据集,不能用原始数据集。

训练集数据:3W张,每张照片包括颜色图像和对应的编码类别和具体位置;

验证集数据:1W张,每张照片包括颜色图像和对应的编码类别和具体位置;

测试集A:4W张。(本人是A)

测试集B:4W张。

下载后:

天池是一个著名的数据科学竞赛平台,而datawhale是一家致力于数据科学教育和社群建设的组织。街景字符编码识别是指通过计算机视觉技术,对街道场景中的字符进行自动识别和分类。 街景字符编码识别是一项重要的研究领域,对于提高交通安全、城市管理和智能驾驶技术都具有重要意义。街道场景中的字符包括道路标志、车牌号码、店铺招牌等。通过对这些字符进行准确的识别,可以辅助交通管理人员进行交通监管、道路规划和交通流量分析。同时,在智能驾驶领域,街景字符编码识别也是一项关键技术,可以帮助自动驾驶系统准确地识别理解道路上的各种标志和标识,为自动驾驶提供可靠的环境感知能力。 天池和datawhale联合举办街景字符编码识别竞赛,旨在吸引全球数据科学和计算机视觉领域的优秀人才,集思广益,共同推动该领域的研究和发展。通过这个竞赛,参赛选手可以使用各种机器学习和深度学习算法,基于提供的街景字符数据集,设计和训练模型,实现准确的字符编码识别。这个竞赛不仅有助于促进算法研发和技术创新,也为各参赛选手提供了一个学习、交流和展示自己技能的平台。 总之,天池datawhale街景字符编码识别是一个具有挑战性和实际应用需求的竞赛项目,旨在推动计算机视觉和智能交通领域的技术发展,同时也为数据科学爱好者提供了一个学习和展示自己能力的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值