背景?慢SQL才是噩梦的开始!
线上环境,一主一从的MySQL实例,每天凌晨准时SLA告警,烦都烦死了!说白了,就是主从延迟闹的。你想啊,这时候万一主从切换,数据一致性咋保证?得花老长时间追延迟,才能安心切。更扎心的是,慢查询日志里,全是它的身影!罪魁祸首?每天晚上定时跑的“删除一个月前数据”任务!这套系统基于SpringBoot + MyBatis Plus + Vue,听起来很美好,但一到大数据量就露馅。
(友情提示:代码洁癖者慎入,以下链接可能引起不适)
- 想看源码?戳这里:https://github.com/YunaiV/ruoyi-vue-pro
- 视频教程?胆小勿入:视频教程 | ruoyi-vue-pro 开发指南
抽丝剥茧:慢查询日志里的惊天秘密
面对这团乱麻,咱得冷静。祭出pt-query-digest
这个神器,扒一扒最近一周的mysql-slow.log
,看看它到底在搞什么鬼。
pt-query-digest --since=148h mysql-slow.log | less
结果一:时间都去哪儿了?
一周慢查询累计耗时25403秒!最慢的SQL竟然跑了266秒!平均下来,每个慢SQL也要5秒。更可怕的是,平均扫描行数高达1766万!这得读多少磁盘啊!
结果二:arrival_record
,你就是那个磨人的小妖精!
select arrival_record
操作,慢查询次数足足4万多次!平均响应时间4秒。delete arrival_record
也不甘示弱,虽然只有6次,但平均响应时间高达258秒!这简直是灾难!
select xxx_record
语句分析:一样的配方,不一样的参数
select arrival_record
慢查询语句都长得差不多,只是where
后面的参数值不一样。比如:
select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G
这条select arrival_record
语句,MySQL最多扫描了5600万行,平均也扫了172万行。罪魁祸首找到了:扫描行数太多!
执行计划?索引是个摆设!
explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;
执行计划显示,用到了索引IXFK_arrival_record
,但预计扫描行数还是高达3000多万行!这索引怕不是个假货!
再看看索引信息:
show index from arrival_record;
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| arrival_record | 0 | PRIMARY | 1 | id | A | 107990720 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 1 | product_id | A | 1344 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 2 | station_no | A | 22161 | NULL | NULL | YES | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 3 | sequence | A | 77233384 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 4 | receive_time | A | 65854652 | NULL | NULL | YES | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 5 | arrival_time | A | 73861904 | NULL | NULL | YES | BTREE | | |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
show create table arrival_record;
..........
arrival_spend_ms bigint(20) DEFAULT NULL,
total_spend_ms bigint(20) DEFAULT NULL,
PRIMARY KEY (id),
KEY IXFK_arrival_record (product_id,station_no,sequence,receive_time,arrival_time) USING BTREE,
CONSTRAINT FK_arrival_record_product FOREIGN KEY (product_id) REFERENCES product (id) ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDB AUTO_INCREMENT=614538979 DEFAULT CHARSET=utf8 COLLATE=utf8_bin |
几个关键信息:
- 表总记录数1亿多。
- 只有一个复合索引
IXFK_arrival_record
,product_id
字段基数太小,选择性差。 where
条件中没有station_no
字段,用不到复合索引的product_id
,station_no
,sequence
,receive_time
这几个字段。- 只用到了复合索引的第一个字段
product_id
,但这个字段选择性太差,导致扫描行数居高不下。 receive_time
字段基数大,选择性好,如果能用上就好了。
有没有其他漏网之鱼?让tcpdump
来告诉你!
光看慢查询日志还不够,万一有其他查询没被记录呢?tcpdump
出马!
tcpdump -i bond0 -s 0 -l -w - dst port 3316 | strings | grep select | egrep -i 'arrival_record' >/tmp/select_arri.log
抓包一段时间,拿到所有包含arrival_record
的select
语句。
再用这段骚气的shell脚本,提取where
条件:
IFS_OLD=$IFS
IFS=$'
'
for i in `cat /tmp/select_arri.log `;do echo ${i#*'from'}; done | less
IFS=$IFS_OLD
结果如下:
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=17 and arrivalrec0_.station_no='56742'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S7100'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4631'
...
看来,还有一些查询用到了product_id
, station_no
, sequence
这三个字段,可以利用复合索引的前三个字段。
结论:索引优化势在必行!
删除现有复合索引IXFK_arrival_record
,新建两个索引:
- 复合索引
idx_sequence_station_no_product_id
- 单列索引
indx_receive_time
delete xxx_record
语句分析:全表扫描要人命!
delete
操作平均扫描1.1亿行,平均执行时间262秒!简直不能忍!
delete
语句如下:
delete from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G
每次执行,参数值都不一样。
看看执行计划:
explain select * from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 109501508
filtered: 33.33
Extra: Using where
1 row in set, 1 warning (0.00 sec)
没有用到任何索引,全表扫描!必须优化!
优化方案:亡羊补牢,为时不晚!
建立单列索引indx_receive_time(receive_time)
(再次友情提示:以下链接可能引起不适)
- 想看源码?戳这里:https://github.com/YunaiV/yudao-cloud
- 视频教程?胆小勿入:视频教程 | ruoyi-vue-pro 开发指南
纸上谈兵?不如真刀真枪干一场!
把arrival_record
表拷贝到测试环境,开始折腾!
看看原表的信息
du -sh /datas/mysql/data/3316/cq_new_cimiss/arrival_record*
12K /datas/mysql/data/3316/cq_new_cimiss/arrival_record.frm
48G /datas/mysql/data/3316/cq_new_cimiss/arrival_record.ibd
select count() from cq_new_cimiss.arrival_record;
+-----------+
| count() |
+-----------+
| 112294946 |
+-----------+
1亿多记录数
SELECT
table_name,
CONCAT(FORMAT(SUM(data_length) / 1024 / 1024,2),'M') AS dbdata_size,
CONCAT(FORMAT(SUM(index_length) / 1024 / 1024,2),'M') AS dbindex_size,
CONCAT(FORMAT(SUM(data_length + index_length) / 1024 / 1024 / 1024,2),'G') AS table_size(G),
AVG_ROW_LENGTH,table_rows,update_time
FROM
information_schema.tables
WHERE table_schema = 'cq_new_cimiss' and table_name='arrival_record';
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| table_name | dbdata_size | dbindex_size | table_size(G) | AVG_ROW_LENGTH | table_rows | update_time |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| arrival_record | 18,268.02M | 13,868.05M | 31.38G | 175 | 109155053 | 2019-03-26 12:40:17 |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
磁盘占用48G,但MySQL里只有31G,说明有17G左右的碎片!都是delete
惹的祸!
备份、还原、删索引、建索引,一顿操作猛如虎!
先用mydumper
并行压缩备份:
user=root
passwd=xxxx
socket=/datas/mysql/data/3316/mysqld.sock
db=cq_new_cimiss
table_name=arrival_record
backupdir=/datas/dump_$table_name
mkdir -p $backupdir
nohup echo `date +%T` && mydumper -u $user -p $passwd -S $socket -B $db -c -T $table_name -o $backupdir -t 32 -r 2000000 && echo `date +%T` &
52秒搞定,压缩后只有1.2G!mydumper
真香!
Started dump at: 2019-03-26 12:46:04
........
Finished dump at: 2019-03-26 12:46:56
du -sh /datas/dump_arrival_record/
1.2G /datas/dump_arrival_record/
拷贝到测试节点:
scp -rp /datas/dump_arrival_record root@10.230.124.19:/datas
多线程导入数据:
time myloader -u root -S /datas/mysql/data/3308/mysqld.sock -P 3308 -p root -B test -d /datas/dump_arrival_record -t 32
2小时6分钟搞定!
导入后,磁盘占用:
du -h -d 1 /datas/mysql/data/3308/test/arrival_record.*
12K /datas/mysql/data/3308/test/arrival_record.frm
30G /datas/mysql/data/3308/test/arrival_record.ibd
没有碎片了,和MySQL里的大小一致。
在线DDL?还是PT-OSC?
分别用online DDL
和pt-osc
来删除重建索引。记得先删外键,不然删不掉复合索引。
nohup bash /tmp/ddl_index.sh &
2019-04-04-10:41:39 begin stop mysqld_3308
2019-04-04-10:41:41 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-10:46:53 start mysqld_3308
2019-04-04-10:46:59 online ddl begin
2019-04-04-11:20:34 onlie ddl stop
2019-04-04-11:20:34 begin stop mysqld_3308
2019-04-04-11:20:36 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-11:22:48 start mysqld_3308
2019-04-04-11:22:53 pt-osc begin
2019-04-04-12:19:15 pt-osc stop
online ddl
花了34分钟,pt-osc
花了57分钟。看来online ddl
更快!
DDL参考
撸起袖子,上线开干!
一主一从实例,应用连VIP。先在从库上用online ddl
操作(不记录binlog),然后主从切换,再在新从库上操作(还是不记录binlog)。
function red_echo () {
local what="$*"
echo -e "$(date +%F-%T) ${what}"
}
function check_las_comm(){
if [ "$1" != "0" ];then
red_echo "$2"
echo "exit 1"
exit 1
fi
}
red_echo "stop slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"stop slave"
check_las_comm "$?" "stop slave failed"
red_echo "online ddl begin"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;select now() as ddl_start;ALTER TABLE $db_.`${table_name}` DROP FOREIGN KEY FK_arrival_record_product,drop index IXFK_arrival_record,add index idx_product_id_sequence_station_no(product_id,sequence,station_no),add index idx_receive_time(receive_time);select now() as ddl_stop" >>${log_file} 2>& 1
red_echo "onlie ddl stop"
red_echo "add foreign key"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;ALTER TABLE $db_.${table_name} ADD CONSTRAINT _FK_${table_name}_product FOREIGN KEY (product_id) REFERENCES cq_new_cimiss.product (id) ON DELETE NO ACTION ON UPDATE NO ACTION;" >>${log_file} 2>& 1
check_las_comm "$?" "add foreign key error"
red_echo "add foreign key stop"
red_echo "start slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"start slave"
check_las_comm "$?" "start slave failed"
执行时间
2019-04-08-11:17:36 stop slave
mysql: [Warning] Using a password on the command line interface can be insecure.
ddl_start
2019-04-08 11:17:36
ddl_stop
2019-04-08 11:45:13
2019-04-08-11:45:13 onlie ddl stop
2019-04-08-11:45:13 add foreign key
mysql: [Warning] Using a password on the command line interface can be insecure.
2019-04-08-12:33:48 add foreign key stop
2019-04-08-12:33:48 start slave
再看看执行计划
explain select count(*) from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: range
possible_keys: idx_receive_time
key: idx_receive_time
key_len: 6
ref: NULL
rows: 7540948
filtered: 100.00
Extra: Using where; Using index
explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: range
possible_keys: idx_product_id_sequence_station_no,idx_receive_time
key: idx_receive_time
key_len: 6
ref: NULL
rows: 291448
filtered: 16.66
Extra: Using index condition; Using where
都用到了idx_receive_time
索引,扫描行数大大降低!
索引优化后,就万事大吉了吗?
delete
操作还是花了77秒!
delete from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G
通过receive_time
索引删除300多万记录,花了77秒!还是太慢!
大表Delete优化终极方案:小批量删除!
应用端优化成每次删除10分钟的数据,每次执行时间1秒左右,SLA告警消失!
还有一种方法:按主键顺序,每次删除20000条记录
#得到满足时间条件的最大主键ID
#通过按照主键的顺序去 顺序扫描小批量删除数据
#先执行一次以下语句
SELECT MAX(id) INTO @need_delete_max_id FROM `arrival_record` WHERE receive_time<'2019-03-01' ;
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT(); #返回20000
#执行小批量delete后会返回row_count(), 删除的行数
#程序判断返回的row_count()是否为0,不为0执行以下循环,为0退出循环,删除操作完成
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT();
#程序睡眠0.5s
总结:血的教训!
- 表数据量太大,不仅要关注响应时间,还要关注维护成本!
- DDL操作要结合实际情况,选择合适的变更方式!
- 大数据量Delete,一定要用小批量删除!
黑客/网络安全学习包
资料目录
-
成长路线图&学习规划
-
配套视频教程
-
SRC&黑客文籍
-
护网行动资料
-
黑客必读书单
-
面试题合集
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************
1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************
2.视频教程
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************
3.SRC&黑客文籍
大家最喜欢也是最关心的SRC技术文籍&黑客技术也有收录
SRC技术文籍:
黑客资料由于是敏感资源,这里不能直接展示哦!
4.护网行动资料
其中关于HW护网行动,也准备了对应的资料,这些内容可相当于比赛的金手指!
5.黑客必读书单
**
**
6.面试题合集
当你自学到这里,你就要开始思考找工作的事情了,而工作绕不开的就是真题和面试题。
更多内容为防止和谐,可以扫描获取~
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*********************************