别再问我MySQL亿级大表怎么搞了!直接看我操作!从零基础到精通,收藏这篇就够了!

背景?慢SQL才是噩梦的开始!

线上环境,一主一从的MySQL实例,每天凌晨准时SLA告警,烦都烦死了!说白了,就是主从延迟闹的。你想啊,这时候万一主从切换,数据一致性咋保证?得花老长时间追延迟,才能安心切。更扎心的是,慢查询日志里,全是它的身影!罪魁祸首?每天晚上定时跑的“删除一个月前数据”任务!这套系统基于SpringBoot + MyBatis Plus + Vue,听起来很美好,但一到大数据量就露馅。

(友情提示:代码洁癖者慎入,以下链接可能引起不适)

抽丝剥茧:慢查询日志里的惊天秘密

面对这团乱麻,咱得冷静。祭出pt-query-digest这个神器,扒一扒最近一周的mysql-slow.log,看看它到底在搞什么鬼。

pt-query-digest --since=148h mysql-slow.log | less

结果一:时间都去哪儿了?

img

一周慢查询累计耗时25403秒!最慢的SQL竟然跑了266秒!平均下来,每个慢SQL也要5秒。更可怕的是,平均扫描行数高达1766万!这得读多少磁盘啊!

结果二:arrival_record,你就是那个磨人的小妖精!

img

select arrival_record操作,慢查询次数足足4万多次!平均响应时间4秒。delete arrival_record也不甘示弱,虽然只有6次,但平均响应时间高达258秒!这简直是灾难!

select xxx_record语句分析:一样的配方,不一样的参数

select arrival_record慢查询语句都长得差不多,只是where后面的参数值不一样。比如:

select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G

img

这条select arrival_record语句,MySQL最多扫描了5600万行,平均也扫了172万行。罪魁祸首找到了:扫描行数太多!

执行计划?索引是个摆设!

explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;

执行计划显示,用到了索引IXFK_arrival_record,但预计扫描行数还是高达3000多万行!这索引怕不是个假货!

再看看索引信息:

show index from arrival_record;

+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table            | Non_unique | Key_name            | Seq_in_index | Column_name  | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| arrival_record |          0 | PRIMARY             |            1 | id           | A         |   107990720 |     NULL | NULL   |      | BTREE      |         |               |
| arrival_record |          1 | IXFK_arrival_record |            1 | product_id   | A         |        1344 |     NULL | NULL   |      | BTREE      |         |               |
| arrival_record |          1 | IXFK_arrival_record |            2 | station_no   | A         |       22161 |     NULL | NULL   | YES  | BTREE      |         |               |
| arrival_record |          1 | IXFK_arrival_record |            3 | sequence     | A         |    77233384 |     NULL | NULL   |      | BTREE      |         |               |
| arrival_record |          1 | IXFK_arrival_record |            4 | receive_time | A         |    65854652 |     NULL | NULL   | YES  | BTREE      |         |               |
| arrival_record |          1 | IXFK_arrival_record |            5 | arrival_time | A         |    73861904 |     NULL | NULL   | YES  | BTREE      |         |               |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

show create table arrival_record;

..........
  arrival_spend_ms  bigint(20) DEFAULT NULL,
  total_spend_ms    bigint(20) DEFAULT NULL,
  PRIMARY KEY (id),
  KEY IXFK_arrival_record (product_id,station_no,sequence,receive_time,arrival_time) USING BTREE,
  CONSTRAINT FK_arrival_record_product FOREIGN KEY (product_id) REFERENCES product (id) ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDB AUTO_INCREMENT=614538979 DEFAULT CHARSET=utf8 COLLATE=utf8_bin |

几个关键信息:

  • 表总记录数1亿多。
  • 只有一个复合索引IXFK_arrival_recordproduct_id字段基数太小,选择性差。
  • where条件中没有station_no字段,用不到复合索引的product_id,station_no,sequence,receive_time这几个字段。
  • 只用到了复合索引的第一个字段product_id,但这个字段选择性太差,导致扫描行数居高不下。
  • receive_time字段基数大,选择性好,如果能用上就好了。

有没有其他漏网之鱼?让tcpdump来告诉你!

光看慢查询日志还不够,万一有其他查询没被记录呢?tcpdump出马!

tcpdump -i bond0 -s 0 -l -w - dst port 3316 | strings | grep select | egrep -i 'arrival_record' >/tmp/select_arri.log

抓包一段时间,拿到所有包含arrival_recordselect语句。

再用这段骚气的shell脚本,提取where条件:

IFS_OLD=$IFS
IFS=$'
'
for i in `cat /tmp/select_arri.log `;do echo ${i#*'from'}; done | less
IFS=$IFS_OLD

结果如下:

arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=17 and arrivalrec0_.station_no='56742'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S7100'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4631'
...

看来,还有一些查询用到了product_id, station_no, sequence这三个字段,可以利用复合索引的前三个字段。

结论:索引优化势在必行!

删除现有复合索引IXFK_arrival_record,新建两个索引:

  • 复合索引idx_sequence_station_no_product_id
  • 单列索引indx_receive_time

delete xxx_record语句分析:全表扫描要人命!

img

delete操作平均扫描1.1亿行,平均执行时间262秒!简直不能忍!

delete语句如下:

delete from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G

每次执行,参数值都不一样。

看看执行计划:

explain select * from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: arrival_record
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 109501508
     filtered: 33.33
      Extra: Using where
1 row in set, 1 warning (0.00 sec)

没有用到任何索引,全表扫描!必须优化!

优化方案:亡羊补牢,为时不晚!

建立单列索引indx_receive_time(receive_time)

(再次友情提示:以下链接可能引起不适)

纸上谈兵?不如真刀真枪干一场!

arrival_record表拷贝到测试环境,开始折腾!

看看原表的信息

du -sh /datas/mysql/data/3316/cq_new_cimiss/arrival_record*
12K     /datas/mysql/data/3316/cq_new_cimiss/arrival_record.frm
48G     /datas/mysql/data/3316/cq_new_cimiss/arrival_record.ibd
select count() from cq_new_cimiss.arrival_record;
+-----------+
| count()   |
+-----------+
| 112294946 |
+-----------+
1亿多记录数
SELECT
  table_name,
  CONCAT(FORMAT(SUM(data_length) / 1024 / 1024,2),'M') AS dbdata_size,
  CONCAT(FORMAT(SUM(index_length) / 1024 / 1024,2),'M') AS dbindex_size,
  CONCAT(FORMAT(SUM(data_length + index_length) / 1024 / 1024 / 1024,2),'G') AS table_size(G),
  AVG_ROW_LENGTH,table_rows,update_time
FROM
  information_schema.tables
WHERE table_schema = 'cq_new_cimiss' and table_name='arrival_record';
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| table_name     | dbdata_size | dbindex_size | table_size(G) | AVG_ROW_LENGTH | table_rows | update_time         |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| arrival_record | 18,268.02M  | 13,868.05M  | 31.38G     |            175 |  109155053 | 2019-03-26 12:40:17 |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+

磁盘占用48G,但MySQL里只有31G,说明有17G左右的碎片!都是delete惹的祸!

备份、还原、删索引、建索引,一顿操作猛如虎!

先用mydumper并行压缩备份:

user=root
passwd=xxxx
socket=/datas/mysql/data/3316/mysqld.sock
db=cq_new_cimiss
table_name=arrival_record
backupdir=/datas/dump_$table_name
mkdir -p $backupdir

nohup echo `date +%T` && mydumper -u $user -p $passwd -S $socket -B $db -c -T $table_name -o $backupdir -t 32 -r 2000000 && echo `date +%T` &

52秒搞定,压缩后只有1.2G!mydumper真香!

Started dump at: 2019-03-26 12:46:04
........
Finished dump at: 2019-03-26 12:46:56
du -sh   /datas/dump_arrival_record/
1.2G    /datas/dump_arrival_record/

拷贝到测试节点:

scp -rp /datas/dump_arrival_record root@10.230.124.19:/datas

多线程导入数据:

time myloader -u root -S /datas/mysql/data/3308/mysqld.sock -P 3308 -p root -B test -d /datas/dump_arrival_record -t 32

2小时6分钟搞定!

导入后,磁盘占用:

du -h -d 1 /datas/mysql/data/3308/test/arrival_record.*
12K     /datas/mysql/data/3308/test/arrival_record.frm
30G     /datas/mysql/data/3308/test/arrival_record.ibd

没有碎片了,和MySQL里的大小一致。

在线DDL?还是PT-OSC?

分别用online DDLpt-osc来删除重建索引。记得先删外键,不然删不掉复合索引。

nohup bash /tmp/ddl_index.sh &
2019-04-04-10:41:39 begin stop mysqld_3308
2019-04-04-10:41:41 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-10:46:53 start mysqld_3308
2019-04-04-10:46:59 online ddl begin
2019-04-04-11:20:34 onlie ddl stop
2019-04-04-11:20:34 begin stop mysqld_3308
2019-04-04-11:20:36 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-11:22:48 start mysqld_3308
2019-04-04-11:22:53 pt-osc begin
2019-04-04-12:19:15 pt-osc stop

online ddl花了34分钟,pt-osc花了57分钟。看来online ddl更快!

DDL参考


撸起袖子,上线开干!

一主一从实例,应用连VIP。先在从库上用online ddl操作(不记录binlog),然后主从切换,再在新从库上操作(还是不记录binlog)。

function red_echo () {
        local what="$*"
        echo -e "$(date +%F-%T)  ${what}"
}

function check_las_comm(){
    if [ "$1" != "0" ];then
        red_echo "$2"
        echo "exit 1"
        exit 1
    fi
}

red_echo "stop slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"stop slave"
check_las_comm "$?" "stop slave failed"

red_echo "online ddl begin"
 mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;select now() as  ddl_start;ALTER TABLE $db_.`${table_name}` DROP FOREIGN KEY FK_arrival_record_product,drop index IXFK_arrival_record,add index idx_product_id_sequence_station_no(product_id,sequence,station_no),add index idx_receive_time(receive_time);select now() as ddl_stop" >>${log_file} 2>& 1
 red_echo "onlie ddl stop"
 red_echo "add foreign key"
 mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;ALTER TABLE $db_.${table_name} ADD CONSTRAINT _FK_${table_name}_product FOREIGN KEY (product_id) REFERENCES cq_new_cimiss.product (id) ON DELETE NO ACTION ON UPDATE NO ACTION;" >>${log_file} 2>& 1
 check_las_comm "$?" "add foreign key error"
 red_echo "add foreign key stop"

red_echo "start slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"start slave"
check_las_comm "$?" "start slave failed"

执行时间

2019-04-08-11:17:36 stop slave
mysql: [Warning] Using a password on the command line interface can be insecure.
ddl_start
2019-04-08 11:17:36
ddl_stop
2019-04-08 11:45:13
2019-04-08-11:45:13 onlie ddl stop
2019-04-08-11:45:13 add foreign key
mysql: [Warning] Using a password on the command line interface can be insecure.
2019-04-08-12:33:48 add foreign key stop
2019-04-08-12:33:48 start slave

再看看执行计划

explain select count(*) from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: arrival_record
   partitions: NULL
         type: range
possible_keys: idx_receive_time
          key: idx_receive_time
      key_len: 6
          ref: NULL
         rows: 7540948
     filtered: 100.00
      Extra: Using where; Using index
explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: arrival_record
   partitions: NULL
         type: range
possible_keys: idx_product_id_sequence_station_no,idx_receive_time
          key: idx_receive_time
      key_len: 6
          ref: NULL
         rows: 291448
     filtered: 16.66
      Extra: Using index condition; Using where

都用到了idx_receive_time索引,扫描行数大大降低!

索引优化后,就万事大吉了吗?

delete操作还是花了77秒!

delete from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G

img

通过receive_time索引删除300多万记录,花了77秒!还是太慢!

大表Delete优化终极方案:小批量删除!

应用端优化成每次删除10分钟的数据,每次执行时间1秒左右,SLA告警消失!

img

还有一种方法:按主键顺序,每次删除20000条记录

#得到满足时间条件的最大主键ID
#通过按照主键的顺序去 顺序扫描小批量删除数据
#先执行一次以下语句
SELECT MAX(id) INTO @need_delete_max_id FROM `arrival_record` WHERE receive_time<'2019-03-01' ;
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT(); #返回20000

#执行小批量delete后会返回row_count(), 删除的行数
#程序判断返回的row_count()是否为0,不为0执行以下循环,为0退出循环,删除操作完成
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT();
#程序睡眠0.5s

总结:血的教训!

  • 表数据量太大,不仅要关注响应时间,还要关注维护成本!
  • DDL操作要结合实际情况,选择合适的变更方式!
  • 大数据量Delete,一定要用小批量删除!

黑客/网络安全学习包

资料目录

  1. 成长路线图&学习规划

  2. 配套视频教程

  3. SRC&黑客文籍

  4. 护网行动资料

  5. 黑客必读书单

  6. 面试题合集

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*************************************

3.SRC&黑客文籍

大家最喜欢也是最关心的SRC技术文籍&黑客技术也有收录

SRC技术文籍:

黑客资料由于是敏感资源,这里不能直接展示哦!

4.护网行动资料

其中关于HW护网行动,也准备了对应的资料,这些内容可相当于比赛的金手指!

5.黑客必读书单

**

**

6.面试题合集

当你自学到这里,你就要开始思考找工作的事情了,而工作绕不开的就是真题和面试题。

更多内容为防止和谐,可以扫描获取~

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

*************************************CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享*********************************

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值