引言
目前,开源的项目中有很多 OCR 模型,但是没有一个统一的基准来衡量哪个是更好一些的。面对这么多的模型,让我们有些不知所措。为此,最近一段时间以来,我一直想要构建这样一个基准,现在来看,已经初步具有雏形。
为了能更好地评测各个模型效果,收集标注了两个开源评测集:
-
text_det_test_dataset[1]
-
text_rec_test_dataset[2]
为了能够方便计算各个模型指标,整理开源了两个计算常用指标的库:
-
TextDetMetric[3]
-
TextRecMetric[4]
以下结果均是基于以上 4 个库来的,其指标结果仅仅代表在指定评测集上效果,不代表在其他测试集上结果也是如此,仅供参考。
以下表格中推理时间是基于 MacBook Pro M2 运行所得,不同机器会有差别,请侧重查看彼此之间的比较。
指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。
对应模型下载地址,参见:link[5]。
文本检测模型
评测依赖仓库:
-
rapidocr_onnxruntime==1.3.16
: link[6] -
计算指标库 TextDetMetric: link[7]
-
测试集 text_det_test_dataset: link[8]
详情可以移步AI Studio[9]运行查看。
不同推理引擎下,效果比较:
文本识别模型
评测依赖仓库:
-
rapidocr_onnxruntime==1.3.16
: link[10] -
计算指标库 TextRecMetric: link[11]
-
测试集 text_rec_test_dataset: link[12]
不同推理引擎下,效果比较:
-
输入 Shape:
-
v2:
[3, 32, 320]
-
v3~v4:
[3, 48, 320]
-
不同模型,实例化示例如下:
from rapidocr_onnxruntime import RapidOCR # v3 or v4 engine = RapidOCR( rec_model_path="models/ch_PP-OCRv3_rec_infer.onnx", ) # v2 engine = RapidOCR( rec_model_path="models/ch_ppocr_mobile_v2.0_rec_infer.onnx", rec_img_shape=[3, 32, 320], )
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。