【2025版】最全面的开源OCR模型对比,从零基础到精通,精通收藏这篇就够了!

引言

目前,开源的项目中有很多 OCR 模型,但是没有一个统一的基准来衡量哪个是更好一些的。面对这么多的模型,让我们有些不知所措。为此,最近一段时间以来,我一直想要构建这样一个基准,现在来看,已经初步具有雏形。

为了能更好地评测各个模型效果,收集标注了两个开源评测集:

  • text_det_test_dataset[1]

  • text_rec_test_dataset[2]

为了能够方便计算各个模型指标,整理开源了两个计算常用指标的库:

  • TextDetMetric[3]

  • TextRecMetric[4]

以下结果均是基于以上 4 个库来的,其指标结果仅仅代表在指定评测集上效果,不代表在其他测试集上结果也是如此,仅供参考。

以下表格中推理时间是基于 MacBook Pro M2 运行所得,不同机器会有差别,请侧重查看彼此之间的比较。

指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。

对应模型下载地址,参见:link[5]。

文本检测模型

评测依赖仓库:

  • rapidocr_onnxruntime==1.3.16: link[6]

  • 计算指标库 TextDetMetric: link[7]

  • 测试集 text_det_test_dataset: link[8]

详情可以移步AI Studio[9]运行查看。

不同推理引擎下,效果比较:

文本识别模型

评测依赖仓库:

  • rapidocr_onnxruntime==1.3.16: link[10]

  • 计算指标库 TextRecMetric: link[11]

  • 测试集 text_rec_test_dataset: link[12]

不同推理引擎下,效果比较:

  • 输入 Shape:

  • v2: [3, 32, 320]

  • v3~v4: [3, 48, 320]

  • 不同模型,实例化示例如下:

    from rapidocr_onnxruntime import RapidOCR  
      
    # v3 or v4  
    engine = RapidOCR(  
      rec_model_path="models/ch_PP-OCRv3_rec_infer.onnx",  
    )  
      
    # v2  
    engine = RapidOCR(  
      rec_model_path="models/ch_ppocr_mobile_v2.0_rec_infer.onnx",  
      rec_img_shape=[3, 32, 320],  
    )  
    
    

    AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值