描述
在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。
面对海量租借教室的信息,我们自然希望编程解决这个问题。我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租借教室(包括第sj天和第tj天),每天需要租借dj个教室。
我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提供dj个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申请人修改订单。这里的无法满足指从第sj天到第tj天中有至少一天剩余的教室数量不足dj个。
现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改订单。
格式
输入格式
第一行包含两个正整数n,m,表示天数和订单的数量。
第二行包含n个正整数,其中第i个数为ri,表示第i天可用于租借的教室数量。
接下来有m行,每行包含三个正整数dj,sj,tj,表示租借的数量,租借开始、结束分别在第几天。
每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。
输出格式
如果所有订单均可满足,则输出只有一行,包含一个整数0。否则(订单无法完全满足)输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。
样例1
样例输入1
4 3
2 5 4 3
2 1 3
3 2 4
4 2 4
样例输出1
-1
2
限制
每个测试点1s
提示
对于10%的数据,有1≤ n,m≤ 10;
对于30%的数据,有1≤ n,m≤1000;
对于70%的数据,有1≤ n,m≤ 10^5;
对于100%的数据,有1≤n,m≤10^6,0≤ri,dj≤10^9,1≤sj≤tj≤n
题解:
二分的思想,若第i天不满足,则第i+1天也不满足,根据这个单调性进行二分求解.裸的线段树时间复杂度太高,所以用前缀和思想来写.
对于一个区间s~t的修改加上val,将sum[s]+val,sum[t+1]-val就完成修改,然后O(1)回答.
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int MAXN=1e6+10;
ll sum[MAXN];
int n,m,vi[MAXN];
struct Node{
int l,r,val;
}e[MAXN];
int read(){
char p=' ';int x=0;
while(!(p>='0'&&p<='9')) p=getchar();
while(p>='0'&&p<='9') x=x*10+p-'0',p=getchar();
return x;
}
bool check(int x){
memset(sum,0,sizeof(sum));
fo(i,1,x) sum[e[i].l]+=e[i].val,sum[e[i].r+1]-=e[i].val;
fo(i,1,n)
{
sum[i]+=sum[i-1];
if(sum[i]>vi[i]) return 1;
}
return 0;
}
int main(){
scanf("%d%d",&n,&m);
fo(i,1,n) vi[i]=read();
fo(i,1,m) e[i].val=read(),e[i].l=read(),e[i].r=read();
int l=1,r=m+1,ans=m+1;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
if(ans>m) printf("0\n");
else printf("-1\n%d",ans);
return 0;
}