题目大意:给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量)。
分析:
数据范围不大,询问比较多,考虑用dp直接算出所有点对的答案.因为 密度=val/R所以考虑f[x][y][R] 为x=>y 经过R条边的最小值 ,ans=f[x][y][R]/R
状态转移为:
f[i][j][R]=f[i][k][R-1]+f[k][j][1]
PS:m<=1000 n<=100 原题好像有点问题,数组要开大一点
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int M=1e3+10,N=105;
const double INF=1000000.000;
int n,m,Q,
f[N][N][M];
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int R=1;R<=m;R++)
f[i][j][R]=INF;
for(int a,b,c,i=1;i<=m;i++) {
scanf("%d%d%d",&a,&b,&c);
f[a][b][1]=min(f[a][b][1],c);
}
fo(R,2,m)
fo(k,1,n)
fo(i,1,n)
fo(j,1,n)
f[i][j][R]=min(f[i][k][R-1]+f[k][j][1],f[i][j][R]);
int Q;
scanf("%d",&Q);
while(Q--) {
int x,y;
scanf("%d%d",&x,&y);
double ans=INF;
for(int R=1;R<=m;R++) {
if(f[x][y][R]<INF&&ans>double(f[x][y][R])/double(R*1.000)) {
ans=double(f[x][y][R]/double(R*1.000));
}
}
if(ans>=INF) printf("OMG!\n");
else printf("%.3lf\n",ans);
}
return 0;
}