P1730 Floyed 最小密度路径

题目大意:给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量)。

分析:
数据范围不大,询问比较多,考虑用dp直接算出所有点对的答案.因为 密度=val/R所以考虑f[x][y][R] 为x=>y 经过R条边的最小值 ,ans=f[x][y][R]/R
状态转移为:
f[i][j][R]=f[i][k][R-1]+f[k][j][1]

PS:m<=1000 n<=100 原题好像有点问题,数组要开大一点

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int M=1e3+10,N=105;
const double INF=1000000.000;
int n,m,Q,
f[N][N][M];
int main() {
    scanf("%d%d",&n,&m);

        for(int i=1;i<=n;i++) 
            for(int j=1;j<=m;j++)
                for(int R=1;R<=m;R++)  
                f[i][j][R]=INF;

    for(int a,b,c,i=1;i<=m;i++) {
        scanf("%d%d%d",&a,&b,&c);
        f[a][b][1]=min(f[a][b][1],c);
    }       

    fo(R,2,m)
        fo(k,1,n)
            fo(i,1,n)
                fo(j,1,n)
                     f[i][j][R]=min(f[i][k][R-1]+f[k][j][1],f[i][j][R]);
    int Q;
    scanf("%d",&Q);
    while(Q--) {
        int x,y;
        scanf("%d%d",&x,&y);
        double ans=INF; 
        for(int R=1;R<=m;R++) {
            if(f[x][y][R]<INF&&ans>double(f[x][y][R])/double(R*1.000)) {
                    ans=double(f[x][y][R]/double(R*1.000));
            }
        }
        if(ans>=INF) printf("OMG!\n");
        else printf("%.3lf\n",ans);
    }
    return 0;
}
Floyd算法(也称为Floyd-Warshall算法)是一种用于寻找加权图中最短路径的算法。它可以用来解决带有负权边的图的最短路径问题。在C语言中,实现Floyd算法需要以下步骤: 1. 定义一个二维数组来存储图的邻接矩阵。 2. 初始化邻接矩阵,将不存在的边的距离设置为无穷大,将存在的边的距离设置为它们的权值。 3. 进行三重循环,其中第一重循环控制中间节点,第二重循环控制起点,第三重循环控制终点。在循环过程中,计算每对节点之间的最短路径,并更新邻接矩阵中的距离。 4. 最后,输出邻接矩阵中的最短路径矩阵即可。 具体实现可以参考以下示例代码: ```c #include <stdio.h> #define MAX 1000000 //定义一个无穷大的距离 int main() { int n, m; //n表示点的个数,m表示边的个数 scanf("%d %d", &n, &m); int graph[n][n]; //定义邻接矩阵 int i, j, k; //初始化邻接矩阵 for(i=0; i<n; i++) { for(j=0; j<n; j++) { graph[i][j] = (i == j) ? 0 : MAX; } } //读入边的信息,并更新邻接矩阵 int u, v, w; for(i=0; i<m; i++) { scanf("%d %d %d", &u, &v, &w); graph[u][v] = w; } //Floyd算法核心代码 for(k=0; k<n; k++) { for(i=0; i<n; i++) { for(j=0; j<n; j++) { if(graph[i][k] + graph[k][j] < graph[i][j]) { graph[i][j] = graph[i][k] + graph[k][j]; } } } } //输出最短路径矩阵 for(i=0; i<n; i++) { for(j=0; j<n; j++) { if(graph[i][j] == MAX) { printf("INF "); } else { printf("%d ", graph[i][j]); } } printf("\n"); } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值