最小密度路径 洛谷 1730

题目描述

给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量)。

输入输出格式

输入格式:
第一行包括2个整数N和M。

以下M行,每行三个数字A、B、W,表示从A到B有一条权值为W的有向边。

再下一行有一个整数Q。

以下Q行,每行一个询问X和Y,如题意所诉。

输出格式:
对于每个询问输出一行,表示该询问的最小密度路径的密度(保留3位小数),如果不存在这么一条路径输出“OMG!”(不含引号)。

输入输出样例

输入样例#1:
3 3
1 3 5
2 1 6
2 3 6
2
1 3
2 3
输出样例#1:
5.000
5.500
说明

1 ≤ N ≤ 10,1 ≤ M ≤ 100,1 ≤ W ≤ 1000,1 ≤ Q ≤ 1000

分析:
直接暴力就好了,这题数据n只有10。

代码:

var
  n,m,q:longint;
  a:array [0..51,0..51,0..51] of longint;
procedure init;
var
  i,j,l,k,x,y,z:longint;
begin
  fillchar(a,sizeof(a),255);
  readln(n,m);
  for i:=1 to m do
    begin
      readln(x,y,z);
      if (a[x,y,1]=-1) or (z<a[x,y,1]) then
        a[x,y,1]:=z;
    end;
  for i:=1 to n do
    a[i,i,0]:=0;
  for l:=2 to n do
    for k:=1 to n do
      for i:=1 to n do
        for j:=1 to n do
          if (a[i,k,l-1]>-1) and (a[k,j,1]>-1) and ((a[i,j,l]=-1) or (a[i][j][l]>a[i,k,l-1]+a[k,j,1])) then
            a[i,j,l]:=a[i,k,l-1]+a[k,j,1];
end;

procedure main;
var
  i,j,x,y:longint;
  max:real;
begin
  readln(q);
  for i:=1 to q do
    begin
      readln(x,y);
      max:=maxlongint div 3;
      for j:=0 to n do
        if (a[x,y,j]<>-1) and (a[x,y,j]<max*j) then
          max:=a[x,y,j]/j;
        if max<>maxlongint div 3 then writeln(max:0:3)
                                 else writeln('OMG!');
    end
end;

begin
  init;
  main;
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值