Bellman-Ford算法

       此算法是解决单源最短路径的一种算法,Dijkstra算法虽然也是,但是有自己的局限性,就是不能存在负权边。这是为什么呢?因为Dijkstra实际上是贪心法,在每一步都选择最优解,即每次都选择最近的一个点,但是负权边的加入会打破这一性质,就使得Dijkstra算法失效了。为了解决这一问题,可以使用这里的Bellman-Ford算法,对每条边进行松弛。

#include<iostream>

using namespace std;

int main(){
	int dis[10], backup[10], u[10], v[10], w[10];
	int n, m, check, flag;
	cin >> n >> m;
	for(int i = 1; i <= m; i++) cin >> u[i] >> v[i] >> w[i];
	for(int i = 1; i <= n; i++) dis[i] = 99999;
	dis[1] = 0;
	//Bellman-Ford
	/*
	dis[v[i]] > dis[u[i]] + w[i]表示加入边u->v后,1到v[i]的最短距离能否通过1->u[i]->v[i]变得
	更小,如果可以则松弛
	第1轮对所有的边进行松弛之后,得到的是从1号顶点“只能经过一条边”到达其余各顶点的最短路径长度
	第2轮对所有的边进行松弛之后,得到的是从1号顶点“最多经过两条边”到达其余各顶点的最短路径长度
	如果进行k轮的话,得到的就是1号顶点“最多经过k条边”到达其余各顶点的最短路径长度
	(有点像广搜的意思)
	一个n个顶点的图,最短路径最多只有n - 1条边(因为是简单路径)
	如果存在负权回路,则第n次松弛的时候dis数组仍然会有变化 
	*/
	for(int k = 1; k <= n - 1; k++){
		//backup
		for(int i = 1; i <= n; i++) backup[i] = dis[i];
		//slack
		for(int i = 1; i <= m; i++)
			if(dis[v[i]] > backup[u[i]] + w[i])
				dis[v[i]] = backup[u[i]] + w[i];
		//check
		check = 0;
		for(int i = 1; i <= n; i++)
			if(backup[i] != dis[i]){
				check = 1;
				break;
			}
		if(check == 0) break;
	}
	//check negative weighted edge
	flag = 0;
	for(int i = 1; i <= m; i++)
		if(dis[v[i]] > dis[u[i]] + w[i])
			flag = 1;
	if(flag == 1) cout << "The graph has nagative weighted circle" << endl;
	else{
		for(int i = 1; i <= n; i++)
			cout << dis[i] << "  ";
	}
	return 0;
}

/*
input:
5 5
2 3 2
1 2 -3
1 5 5
4 5 2
3 4 3

output:
0 -3 -1 2 4
*/

       上面的代码中已经是Bellman-Ford的一种优化算法,当进行完一轮松弛操作以后,如果所有点的最短距离都没有发生变化,那么就没有必要再次进行松弛了,可以及时跳出循环。还有另一种优化方式,就是用一个队列来存储顶点,对队首顶点的所有相连的边进行松弛,再将每条边的另一个顶点入队,直到队列为空。此时dis数组不再发生变化,因为没有顶点入队导致队列为空。需要注意,同一顶点同时在队列中多次出现是没有意义的,只需出现一次即可。可以申请一个数组用于记录某个顶点是否在队列之中。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值