本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照 a1/b1 a2/b2
的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。
输出格式:
分别在 4 行中按照 有理数1 运算符 有理数2 = 结果
的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式 k a/b
,其中 k
是整数部分,a/b
是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出 Inf
。题目保证正确的输出中没有超过整型范围的整数。
输入样例 1:
2/3 -4/2
输出样例 1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例 2:
5/3 0/6
输出样例 2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
分析:
本题写起来很麻烦,我觉得重点在考分类讨论……比如这个分数怎么显示,你要考虑它是否为0,大于还是小于0,整数部分以及分子是否为0,除法要考虑分母是否为0。其实负数的表示也是个问题,我在结构体里定义了c为整数部分。如果单纯让a或者让c都为0,那么它们两个都有可能为0,所以我干脆让他们两个都保留负号,只保证b始终大于0。
进行约分的时候要求出其最大公约数。
题干也很坑,说是输出保证在int范围内。但是!并不保证程序运行过程中两个数相乘也是在int范围内,所以这里定义成long。输入的时候改为scanf("%ld")。
#include<iostream>
using namespace std;
struct Num{
long a;
long b;
long c;
Num(){
a = b = c = 0;
}
};
int Gcd(int a, int b){
int r = a % b;
while(r != 0){
a = b;
b = r;
r = a % b;
}
return b;
}
Num Simplify(Num num){
int gcd;
if(num.b < 0){
num.b = abs(num.b);
if(num.a != 0) num.a = -1 * num.a;
else if(num.c != 0) num.c = -1 * num.c;
}
int r = num.a / num.b;
num.c = num.c + r;
num.a = num.a - r * num.b;
if(num.a != 0){
gcd = Gcd(abs(num.a), abs(num.b));
num.a /= gcd;
num.b /= gcd;
}
return num;
}
void PrintNum(Num num){
//0 <0 >0
if(num.a == 0 && num.c == 0) cout << '0';
else if(num.a < 0 || num.c < 0){
if(num.c == 0) cout << '(' << num.a << '/' << num.b << ')';
else{
if(num.a != 0) cout << '(' << -1 * abs(num.c) << ' ' << abs(num.a) << '/' << num.b << ')';
else cout << '(' << num.c << ')';
}
}else if(num.a >= 0 && num.c >= 0){
if(num.c == 0) cout << num.a << '/' << num.b;
else{
if(num.a != 0) cout << num.c << ' ' << num.a << '/' << num.b;
else cout << num.c;
}
}
}
int main(){
Num num1, num2, num3;
scanf("%ld/%ld %ld/%ld", &num1.a, &num1.b, &num2.a, &num2.b);
//+
num3.a = num1.a * num2.b + num1.b * num2.a;
num3.b = num1.b * num2.b;
num3.c = 0;
num3 = Simplify(num3);
PrintNum(Simplify(num1));
cout << " + ";
PrintNum(Simplify(num2));
cout << " = ";
PrintNum(num3);
cout << '\n';
//-
num3.a = num1.a * num2.b - num1.b * num2.a;
num3.b = num1.b * num2.b;
num3.c = 0;
num3 = Simplify(num3);
PrintNum(Simplify(num1));
cout << " - ";
PrintNum(Simplify(num2));
cout << " = ";
PrintNum(num3);
cout << '\n';
//*
num3.a = num1.a * num2.a;
num3.b = num1.b * num2.b;
num3.c = 0;
num3 = Simplify(num3);
PrintNum(Simplify(num1));
cout << " * ";
PrintNum(Simplify(num2));
cout << " = ";
PrintNum(num3);
cout << '\n';
///
num3.a = num1.a * num2.b;
num3.b = num1.b * num2.a;
num3.c = 0;
if(num3.b != 0) num3 = Simplify(num3);
PrintNum(Simplify(num1));
cout << " / ";
PrintNum(Simplify(num2));
cout << " = ";
if(num3.b == 0) cout << "Inf";
else PrintNum(num3);
}