prim算法

题目信息
运行结果
本题排行
讨论区

布线问题
时间限制:1000 ms | 内存限制:65535 KB
难度:4

描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少

输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0


#include<iostream>
#include<stdio.h>
#include<vector>
#include<cstdlib>
#include<cstring>
using namespace std;
int map[505][505]={0};
int prim(int v){
    int llong[505]={0};
    int dic[505]={0};
    int sum=0,pos;
    pos=1;
    dic[pos]=1;
    for(int i=1;i<=v;i++){
        llong[i]=map[pos][i];
    }
    for(int l=1;l<v;l++){
        int minn=10000;
        for(int i=1;i<=v;i++){
            if(llong[i]<minn&&llong[i]&&!dic[i]){
                minn=llong[i];
                pos=i;
            }
        }
        sum+=minn;
        dic[pos]=1;
        for(int i=1;i<=v;i++){
            if((llong[i]==0||(llong[i]>map[pos][i]&&map[pos][i]))&&!dic[i]){
                llong[i]=map[pos][i];
            }
        }
    }
    return sum;
}
int main(){
    int k;
    scanf("%d",&k);
    while(k--){
        int v,e;
        memset(map,0,sizeof(map));
        scanf("%d%d",&v,&e);
        int a,b,c,hh;
        for(int i=0;i<e;i++){
            scanf("%d%d%d",&a,&b,&c);
            map[a][b]=c;
            map[b][a]=c;
        }
        int minn=-1;
        for(int i=0;i<v;i++){
            scanf("%d",&hh);
            if(minn==-1)
                minn=hh;
            else
                if(minn>hh)
                minn=hh;
        }
        printf("%d\n",prim(v)+minn);
    }
    return 0;
}        
Prim算法是一种贪心算法,用于求解加权无向图的最小生成树。从一个节点开始,每次选择一个与当前生成树相邻的最小边,加入生成树中,直到所有节点都被加入生成树。下面是Prim算法的伪代码: ``` 1. 选取一个起始节点u 2. 标记节点u为已访问 3. for v in u的邻居节点: 4. 将(u,v)加入候选边集合中 5. while 候选边集合不为空: 6. 从候选边集合中选择一条最小边(u,v),将v标记为已访问 7. 将(u,v)加入生成树中 8. for w in v的邻居节点: 9. 如果w未被访问过,将(v,w)加入候选边集合中 ``` 下面是一个示例代码,使用邻接矩阵来表示图: ```python import sys def prim(graph): n = len(graph) # 初始化 visited = [False] * n dist = [sys.maxsize] * n parent = [-1] * n dist[0] = 0 for i in range(n): # 找到未访问过的最近的节点 u = -1 for j in range(n): if not visited[j] and (u == -1 or dist[j] < dist[u]): u = j # 标记为已访问 visited[u] = True # 更新与节点u相邻的节点的距离 for v in range(n): if not visited[v] and graph[u][v] != 0 and graph[u][v] < dist[v]: dist[v] = graph[u][v] parent[v] = u return parent # 示例代码 if __name__ == '__main__': graph = [ [0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0] ] parent = prim(graph) for i in range(1, len(parent)): print("{}-{}".format(parent[i], i)) ``` 输出结果为: ``` 0-1 1-2 0-3 1-4 ``` 其中,输出的每一行表示生成树中的一条边,如“0-1”表示0和1之间有一条边。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值