python 深度学习环境安装(tensorflow-gpu)


一、安装Anaconda

本文主要通过Anaconda来配置深度学习环境。
可以通过Anaconda官网下载附链接:
https://www.anaconda.com/
判断是否安装成功win+r调出cmd
输入如下指令

conda -V

在这里插入图片描述
出现以上结果,表示安装成功。

1.换源

接下来我们要对Anaconda进行换源,Anaconda默认源下载比较慢,我们需要换清华源或者中科院源,以清华源为例,终端输入:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/simpleitk

判断是否换源成功,终端输入:

conda info

在这里插入图片描述
出现以上结果,表示换源成功。

2.常用指令

接下来是Anaconda常用的一些指令
查看已有的虚拟环境:

conda env list

新建虚拟环境

conda create --name 环境名

进入虚拟环境:

conda activate 环境名

退出虚拟环境:

conda deactivate

删除虚拟环境:

conda remove -n 环境名 --all

复制虚拟环境:

conda create -n conda-env2 --clone conda-env1

这里conda-env2是新创建的虚拟环境,conda-env1是被复制的虚拟环境,这个一定要注意。

二、安装cuda和cudnn

1.对应版本

在安装Tensorflow-gpu之前,我们需要按照以下表来安装cuda跟cudnn对应的版本,下面是cpu跟gpu对应的版本:
CPU
在这里插入图片描述
GPU
在这里插入图片描述
如果以上表格,找不到想要安装的版本,可以访问tensorflow官网进行查看,附链接:https://tensorflow.google.cn/install/source_windows#gpu

2.创建虚拟环境

首先,我们通过Anaconda来创建虚拟环境:

conda create -n csdn python=3.7

创建虚拟环境名称为csdn。
输出y完成创建
在这里插入图片描述
如图所示,完成创建
在这里插入图片描述

3.激活虚拟环境

activate csdn

如图所示,左侧显示虚拟环境名称。
在这里插入图片描述

4.安装cuda

conda install cudatoolkit=10.1

对应版本,根据需求进行修改。
输入y进行安装
在这里插入图片描述
如图所示,完成安装。
在这里插入图片描述

4.安装cudnn

conda install cudnn=7.6

输入y进行安装
在这里插入图片描述
如图所示,完成安装
在这里插入图片描述

三、安装tensorflow的GPU版本

pip install tensorflow-gpu==2.1.0

如图所示,正在进行安装
在这里插入图片描述
安装完成
在这里插入图片描述

1.判断是否安装成功

接下来进行测试,判断是否安装成功。
在虚拟环境中输入python进入python环境
然后输入import tensorflow as ts
如图所示
在这里插入图片描述
再次输入ts.test.is_gpu_available()
如图所示,为True表示安装成功。
在这里插入图片描述

四、pycharm配置虚拟环境

1.新建项目

在这里插入图片描述

2.配置环境

在这里插入图片描述

3.完成创建

在这里插入图片描述

总结

本文主要通过Anaconda来配置tensorflow-gpu环境,介绍了如何新建虚拟环境,下载cuda,cudnn,tensorflow-gpu,以及判断是否安装成功,最后介绍了在pycharm中新建项目来配置虚拟环境。

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅念念52

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值