- 博客(215)
- 资源 (1)
- 收藏
- 关注

原创 【TensorRT C++ API模型加速】TensorRT环境配置、模型转换、CUDA C++加速、TensorRT C++ 加速
TensorRT(Tensor Runtime,TRT):由 NVIDIA 开发,专为 NVIDIA GPU 设计的,用于深度学习高性能推理的SDK (software development kit ,软件开发工具包),可为推理应用程序提供低延迟和高吞吐量。
2024-12-17 20:09:49
2361

原创 【Python/C API】使用C/C++调用Python
Python/C API:是 Python 提供的 C 语言的 API 库。实现在 C/C++ 中嵌入 Python 代码,包括C/C++ 调用 Python 函数、C/C++ 操作 Python 对象、双向通信等等。
2024-12-16 21:52:45
3327
1

原创 Git使用指南 —— 命令行操作 or 图形化工具
Git 是一个离线工具(在本地计算机上),而 GitHub 是一个在线平台(Web端)。(1)Git 是一个分布式版本控制系统,用于跟踪和管理代码库的不同版本。(2)GitHub 是一个基于互联网的代码托管平台,用于协作开发和托管 Git 仓库。
2023-11-20 10:47:54
2056

原创 PyQt6新手教程(七万字)
PyQt是Python编程语言的一个GUI(图形用户界面)工具包,它允许开发人员使用Python语言创建桌面应用程序。PyQt是基于Qt库的Python封装,Qt是一个流行的C++框架,用于开发跨平台的应用程序。
2023-11-01 11:31:35
51004
18

原创 深入浅出:Python内存管理机制
python采用自动内存管理机制:又叫垃圾回收器(garbage collector,gc)。负责定期地扫描并自动回收不再使用的内存和对象,使得开发者可以专注于程序逻辑,而不必担心内存管理问题。
2023-10-23 09:47:31
5610
3

原创 多线程与多进程(原理详解 + 函数详解 + 项目实战 + 经验分享)
进程是操作系统中的一个执行单元;多进程是同时运行多个进程的机制;线程是进程中的一个执行单元;多线程是在一个进程中同时运行多个线程;
2023-09-27 08:18:46
2882
1

原创 【Conda虚拟环境】新建 + 激活 + 安装 + 查看 + 退出 + 删除 + 复制 + 导出 + 导入 + 更改
(1)创建虚拟环境(2)激活虚拟环境(4)查看虚拟环境(3)退出虚拟环境(5)删除虚拟环境(6)复制虚拟环境(7)导出虚拟环境(8)导入虚拟环境(9)更改虚拟环境的安装路径(10)在指定路径下,配置虚拟环境
2023-08-16 09:47:12
40247
8

原创 yolov7目标检测:基于自定义数据集完成检测、训练、测试
主要分三步:(1)环境配置与文件配置(2)检测(3)训练。其中,检测和训练都是可以独立进行的。检测是依赖于权重文件即可运行,而训练是基于自定义训练数据集和超参数生成权重文件。
2023-03-25 20:39:11
6737
13

原创 【深度学习环境配置】Anaconda + PyCharm + CUDA + cuDNN + PyTorch + OpenCV
(1)【CPU版本】Anaconda(Python) + Pycharm + Pytorch(CPU) + Opencv(2)【GPU版本】Anaconda(Python) + Pycharm + CUDA + cuDNN + Pytorch(GPU) + Opencv
2023-02-23 02:00:00
22216
4

原创 Python常用内置函数(全)
详解Python常用函数,并深度剖析彼此的联系。共包括五个大类:数据类型、数据结构、高阶函数、通用函数、数学函数。
2023-01-15 20:38:39
14210
2

原创 三万字硬核详解:yolov1、yolov2、yolov3、yolov4、yolov5、yolov7
Yolo (You Only Look Once) 是目标检测 one-state 的神经网络模型,可以在图像中找出特定物体, 并识别种类和位置。
2023-01-08 00:57:12
28690
11

原创 六万字硬核详解:卷积神经网络CNN(原理详解 + 项目实战 + 经验分享)
深入解析卷积神经网络(CNN)的实际应用,全面整理并梳理了CNN的关键知识点。从基础概念到实战技巧,加速理解与实战,并解决实际问题。
2022-10-31 07:57:08
53221
30

原创 Pytorch基础(数据处理工具箱 + 神经网络工具箱 + Tensor基础 + Numpy基础)
详细介绍Pytorch的数据处理工具箱、神经网络工具箱、Tensor基础、Numpy基础。PyTorch 是一个由 Facebook 团队于 2017 年发布的深度学习框架,是 Torch 框架在 Python 上的衍生。
2022-10-25 01:35:37
6083
9
原创 Hugging Face使用指南
本文介绍了大模型训练的完整流程,包括预训练、微调和后训练三个阶段。预训练阶段利用大规模无标注数据建立基础语言理解能力,微调阶段使用标注数据适配具体任务,后训练阶段通过SFT、RLHF等方法提升模型对齐能力和实用性。文章还详细介绍了Hugging Face生态系统及其核心组件,特别是accelerate框架如何简化分布式训练。最后提供了模型加载的API总览,涵盖从基本加载到高级配置的多种方法。整个训练流程需要大量计算资源和时间,但通过Hugging Face等工具可以显著提高效率。
2025-09-28 10:03:33
811
原创 大模型效果优化方案(经验分享)
本文以2025国际大数据竞赛为例,探讨了拍照识题与解题的技术方案。比赛要求通过手机拍摄的数学题目照片进行自动解题,涉及小学至大学不同难度的选择题、填空题等题型。文章重点分析了OCR+LLM和多模态大模型两种技术路线的优劣,并针对数据稀缺、题型多样、图文混排等挑战,提出了包括数据增强、多模态融合、模型优化等解决方案。特别推荐Qwen2.5-VL-3B-Instruct多模态模型,通过视觉-语言联合训练提升复杂数学题的识别和推理能力。最后总结了不同技术方案的特点和适用场景,为类似数学题目识别与自动解题任务提供了
2025-09-25 15:58:03
687
原创 由浅及深:扫描电子显微镜(Scanning Electron Microscope,SEM)
本文系统梳理了显微镜技术从宏观到微观的成像能力,重点对比了不同显微镜的分辨率范围及特点。主要内容包括:1)按分辨率从低到高详细介绍了8种主流显微镜(光学显微镜至扫描隧道显微镜)及其典型分辨率;2)深度解析扫描电子显微镜(SEM)的定义、结构组成(电子光学系统、样品室系统等五大模块)和工作原理;3)提供从兆米到飞米的完整长度单位换算表,并列举典型微观尺度参照物。文章特别强调,SEM虽只能生成二维图像,但凭借极高景深可呈现立体视觉效果,真实3D结构需通过多角度扫描重建获得。
2025-09-08 10:51:27
1019
原创 【PyTorch项目实战】SAM(Segment Anything Model) —— 致力于建立第一个图像分割基础模型
SAM(Segment Anything Model)是由Meta AI提出的通用图像分割基础模型,支持零样本分割和多种交互方式(点、框、掩码)。该模型基于Vision Transformer架构,包含图像编码器、提示编码器和掩码解码器三部分,在SA-1B数据集(1100万图像+10亿掩码)上预训练,具备极强的泛化能力。SAM支持全自动分割和交互式分割模式,适用于数据标注、图像编辑等场景。Meta随后发布了SAM2,新增视频处理功能,并优化了时序一致性。社区还开发了FastSAM、MobileSAM等轻量化
2025-08-28 10:58:30
1217
原创 【PyTorch项目实战】文本翻译 —— 支持本地部署和自定义训练
OpenNMT是一个开源的神经机器翻译框架,支持本地部署和自定义模型训练,适用于科研和工业应用。它提供PyTorch和TensorFlow两种实现版本,支持Transformer、LSTM等模型架构,但不提供预训练模型。与Google Translate等云端工具不同,OpenNMT强调模型的可定制性和离线使用。用户可通过Hugging Face获取MarianMT等预训练模型进行本地翻译,或自行训练模型。该工具适合研究人员和企业用户,需要一定的技术基础配置使用环境。
2025-08-19 21:24:43
733
原创 Roboflow本地部署
Roboflow是一个计算机视觉平台,提供数据集管理、标注、增强、模型训练和部署的一站式服务。其核心优势在于降低技术门槛,支持无代码/低代码操作。平台采用积分收费模式,涉及数据集存储、训练时长和API调用等场景。用户可根据需求选择自托管或云端部署,平衡成本与性能。
2025-08-11 09:41:48
1328
原创 「Azure 入门指南」:轻松部署网站与 GPT 应用的云平台
Microsoft Azure(读作:阿-朱-儿):是微软推出的全球云计算平台,就像 " 云上的超级电脑工厂 " ,能让你几分钟内在网上创建服务器、网站、数据库、AI 模型等。
2025-07-22 19:13:18
1047
原创 大语言模型的后训练阶段(Post-Training)
大模型后训练技术概述 大语言模型的生命周期分为预训练、后训练及推理部署三个阶段。后训练阶段通过五大范式实现模型优化:1)监督微调(SFT)利用标注数据适应特定任务;2)指令调优使模型理解人类指令;3)RLHF结合人类反馈优化输出;4)领域适配增强专业场景能力;5)参数高效微调(PEFT)通过LoRA等方法降低计算成本。这些技术使模型从通用知识库进化为智能助手,广泛应用于对话、医疗、金融等领域。
2025-07-21 18:48:14
928
原创 【大模型时代】做研究或深耕CV行业,不仅是埋头写代码,更要抬头看趋势。
计算机视觉(CV)在大模型时代并未失去价值,而是逐步融入"图像+语言+多模态"的AI架构体系。当前市场需要既精通传统图像处理,又掌握大模型融合逻辑的复合型人才。热门方向包括CV工程师、医学影像算法、工业视觉、多模态算法等。
2025-07-21 18:42:50
1604
原创 【图像质量评价指标】图像熵(Image Entropy) —— 熵值饱和现象
图像熵是一种基于信息论的度量指标,用于评估图像灰度分布的复杂性和信息含量。
2025-07-17 21:37:07
1565
原创 【图像质量评价指标】信噪比(Signal-to-Noise Ratio,SNR)
图像信噪比(SNR)是评价图像质量的关键指标,衡量有用信号与噪声的相对强度。SNR计算公式为信号能量与噪声能量的对数比值,单位为分贝(dB),值越高表示图像质量越好。
2025-07-17 21:36:22
1916
2
原创 图像质量评价(Image Quality Assessment,IQA)
图像质量评价(IQA)是衡量图像在主观感受或客观性能上的量化标准,广泛应用于图像处理任务的效果评估。
2025-07-16 23:29:52
1173
原创 【图像处理】图像过暗或灰度分布过窄
本文提出了一种基于统计特征与机器学习的图像过暗检测系统,用于自动化检测工业显微成像中的低质量图像。系统采用统计特征(灰度均值、标准差、信息熵、暗像素比例)结合逻辑回归模型,实现高效准确的过暗检测。核心方法包括特征提取、模型训练与离线预测三个模块,支持批量处理和单张图像检测。
2025-07-15 18:17:12
697
原创 【PyTorch项目实战】VisRAG:基于视觉的多模态文档检索增强生成(文本+图像)
本文介绍了多模态RAG(检索增强生成)框架,它通过整合跨模态数据(文本、音频、图像、视频)来提升信息检索与生成能力。核心流程包括:1)将多模态数据编码为向量;2)使用双塔编码结构检索语义相关片段;3)结合原始查询与检索结果生成准确回答。
2025-07-08 21:43:22
1037
原创 多模态大模型(从0到1)
多模态大模型(Multimodal Large Model)是指具备大规模参数量与预训练能力,能够同时感知、理解、融合与生成来自多种模态数据(如:视觉模态〔图像/视频〕、语言模态〔文本/语音〕、传感模态〔激光雷达、深度图、红外线等〕)的人工智能模型。
2025-06-24 23:01:36
1233
原创 【sklearn】K-means、密度聚类、层次聚类、GMM、谱聚类
介绍了聚类的基本概念及其在图像处理中的应用场景,随后详细对比了划分聚类、密度聚类、层次聚类、模型聚类和图聚类五类传统方法的特性与适用条件。
2025-06-24 22:40:52
1060
1
原创 Black自动格式化工具
本文介绍了Python代码自动规范化的常用工具及使用方法,重点推荐了Black格式化工具。Black采用"无配置"理念,统一处理缩进、空格、换行、引号等格式问题,强调风格一致性。
2025-06-17 22:11:02
1158
原创 【win32com.client模块】Python驱动COM接口的Windows硬件与软件自动化控制
win32com.client是Windows平台Python实现COM自动化的核心模块,可控制支持COM接口的设备和软件。它支持Office自动化、科研仪器控制、工业设备管理等,但仅限Windows使用。
2025-06-04 22:14:16
1713
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人