bzoj 3329 Xorequ 题解(数位DP,矩阵快速幂)

原题链接:
bzoj:点我QωQ

题意简述

给定一个 n n n,请在

  1. [ 1 , n ] [1,n] [1,n]中(这一问 不 \color{red}不 取膜)
  2. [ 1 , 2 n ] [1,2^n] [1,2n]中(这一问的答案对 1 0 9 + 7 10^9+7 109+7取膜)

求有多少 x x x满足 x x x^ 3 x = 2 x {3x}=2x 3x=2x,其中 ^表示按位异或。

数据

输入

先有一个 T T T,表示有 T T T组数据。( T &lt; = 1000 T&lt;=1000 T<=1000)
接下来 T T T行,每行一个 n ( n &lt; = 1 0 18 ) n(n&lt;=10^{18}) n(n<=1018)

输出

对于每个数据,输出两行答案,第一行是 [ 1 , n ] [1,n] [1,n]中的解数,第二行是 [ 1 , 2 n ] [1,2^n] [1,2n]总的解数。第一个 不 \color{red}不 取膜,第二个取膜。

样例

输入
1
1
输出
1
2

思路

看起来好像 1 1 1简单, 2 2 2难。但是对于我这个数学很好但是不会数位 D P DP DP的数竟狗,我感觉 2 2 2简单, 1 1 1难。无论如何,现在我是都会了。先讲第一问 ⑧ ⑧

part1. 第一问

首先先化简那个式子。同时异或 x x x,得
x x x^ 2 x 2x 2x= 3 x 3x 3x
x x x^ 2 x 2x 2x= x + 2 x x+2x x+2x
我们知道, a + b = a a+b=a a+b=a^ b b b+ ( a (a (a& b ) &lt; &lt; 1 b)&lt;&lt;1 b)<<1(在写 a + b a+b a+b的时候要用到这个)
继续推:
x x x ^ 2 x 2x 2x= x x x ^ 2 x 2x 2x+ ( x (x (x& 2 x ) &lt; &lt; 1 2x)&lt;&lt;1 2x)<<1
( x (x (x& 2 x ) &lt; &lt; 1 = 0 2x)&lt;&lt;1=0 2x)<<1=0
x x x& 2 x = 0 2x=0 2x=0
x x x& ( x &lt; &lt; 1 ) = 0 (x&lt;&lt;1)=0 (x<<1)=0
化简到这里,就相当于 x x x没有连续的 1 1 1。(想想,如果有连续的 1 1 1,那么 x x x x &lt; &lt; 1 x&lt;&lt;1 x<<1就会有一个公共位,那么 x x x& ( x &lt; &lt; 1 ) (x&lt;&lt;1) (x<<1)就不会 = 0 =0 =0

已经能看出来数位 D P DP DP了。设 d p [ i ] [ 0 / 1 ] dp[i][0/1] dp[i][0/1]为长度为 i i i,首位是 0 / 1 0/1 0/1的方案数。
如果第 i i i位是 1 1 1,那么 i − 1 i-1 i1位一定不能是 1 1 1,只能是 0 0 0。所以 d p [ i ] [ 1 ] = d p [ i − 1 ] [ 0 ] dp[i][1]=dp[i-1][0] dp[i][1]=dp[i1][0]
如果第 i i i位是 0 0 0,那随便了, d p [ i ] [ 0 ] = d p [ i − 1 ] [ 0 ] + d p [ i − 1 ] [ 1 ] dp[i][0]=dp[i-1][0]+dp[i-1][1] dp[i][0]=dp[i1][0]+dp[i1][1]

然后就是如何拆分的问题。由于是二进制,要稍微简单一点。我们拆分原数,设原数长度为 c n t cnt cnt,位数存在 d d d数里(我是按照网上多数人的写法反着存的,因为正着实在不方便)。考虑两种情况:

  1. 位数比原数小,显然是珂取的。此时答案 = d p [ 1... ( c n t − 1 ) ] [ 1 ] =dp[1...(cnt-1)][1] =dp[1...(cnt1)][1]
  2. 位数 = = =原数,而且和原数有一些相同的前缀。这个比较复杂。 i i i遍历前缀位置的下一个位置,从 c n t − 1 cnt-1 cnt1 1 1 1,就是前缀位置是从 c n t cnt cnt 2 2 2。显然,第 i i i个位置是珂以取 0 0 0的。当然,如果 d [ i ] d[i] d[i] d [ i + 1 ] d[i+1] d[i+1]都是 0 0 0,继续下去就会出错,及时 b r e a k break break掉。当然,这个是取不到原数的,我们考虑将原数加 1 1 1,计算结束再减回来。

part2. 第二问

身为一个数学竞赛狗,以前做过一些数学竞赛题。见IWYMIC2008 第五题:

一个十位数,其数码只能是2或3,且没有2个3是相邻的,这样的十位数有多少个?

简直和这个题一模一样,只是 0 , 1 0,1 0,1换成了 2 , 3 2,3 2,3而已。如果去看那个题的题解(上百度找),会发现:
t m ^{tm} tm就是一斐波那契!!!
矩阵快速幂就过了!!!

代码:

#include<bits/stdc++.h>
using namespace std;
namespace Flandle_Scarlet
{
    #define int long long
    #define mod 1000000007
    int t,n;
    int dp[70][2];
    void DP()
    {
        dp[0][0]=1;
        for(int i=1;i<=63;++i)
        {
            dp[i][0]=dp[i-1][0]+dp[i-1][1];
            dp[i][1]=dp[i-1][0];
        }
    }

    int Case1()//第一问
    {
        ++n;//先+1
        int d[70];int cnt=0;
        while(n)
        {
            d[++cnt]=(n&1);
            n>>=1;
        }

        int ans=0;
        for(int i=1;i<cnt;++i)
        {
            ans+=dp[i][1];
        }
        for(int i=cnt-1;i>=1;--i)
        {
            if (d[i]==1)
            {
                ans+=dp[i][0];
                if (d[i+1]==1) break;
            }
        }
        --n;//再回来
        return ans;
    }

    class Matrix//square matrix
    {
        #define N 5//changeable
        public:
            int a[N][N];
            //variable list
            int n;//size
            //initialization
            Matrix()
            {
                memset(a,0,sizeof(a));
                n=0;
            }
            Matrix(int _n)
            {
                memset(a,0,sizeof(a));
                n=_n;
            }
            Matrix(int _n,int _x)
            {_x%=mod;
                n=_n;
                for(int i=0;i<N;++i)
                {
                    for(int j=0;j<N;++j)
                    {
                        a[i][j]=_x;
                    }
                }
            }

            //get value
            int* operator[](int i)
            {
                return *(a+i);
            }
            void Put()
            {
                for(int i=1;i<=n;++i)
                {
                    for(int j=1;j<=n;++j)
                    {
                        printf("%lld ",a[i][j]);
                    }putchar('\n');
                }
            }

            //set value
            void Set(int x)
            {x%=mod;
                for(int i=0;i<N;++i)
                {
                    for(int j=0;j<N;++j)
                    {
                        a[i][j]=x;
                    }
                }
            }
            void Identity()
            {
                memset(a,0,sizeof(a));
                for(int i=0;i<N;++i)
                {
                    a[i][i]=1;
                }
            }
            #undef N //5
    };
    Matrix operator*(Matrix x,Matrix y)
    {
        Matrix ans(x.n,0);
        int n=ans.n;
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
                for(int k=1;k<=n;++k)
                {
                    ans[i][j]+=x[i][k]*y[k][j];
                    ans[i][j]%=mod;
                }
            }
        }
        return ans;
    }
    Matrix operator^(Matrix x,int p)
    {
        Matrix ans(x.n,0);
        ans.Identity();
        while(p)
        {
            if (p&1) ans=ans*x;
            x=x*x,p>>=1;
        }
        return ans;
    }//矩阵
    
    int Case2()
    {
        if (n==1) return 2;
        if (n==2) return 3;//特判边界

        Matrix Init(2,0);
        Init[1][1]=Init[1][2]=1;

        Matrix Trans(2,1);
        Trans[2][2]=0;

        Matrix Ans(2,0);
        Ans=(Trans^(n+1));
        Ans=Ans*Init;
        return Ans[1][2];//斐波那契板子
    }
    void Solve()
    {
        printf("%lld\n%lld\n",Case1(),Case2());
    }
    void Main()
    {
        if (0)
        {
            freopen("","r",stdin);
            freopen("","w",stdout);
        }
        DP();
        scanf("%lld",&t);
        while(t--)
        {
            scanf("%lld",&n);
            Solve();
        }
    }
    #undef int //long long
    #undef mod //1000000007
};
main()
{
    Flandle_Scarlet::Main();
    return 0;
}

回到总题解界面

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值