【bzoj3329】Xorequ 矩阵乘法+数位DP

Description

http://www.lydsy.com/JudgeOnline/upload/201312/1(2).jpg

Input

第一行一个正整数,表示数据组数据 ,接下来T行
每行一个正整数N

Output

2*T行
第2*i-1行表示第i个数据中问题一的解,

第2*i行表示第i个数据中问题二的解,

Sample Input

1

1

Sample Output

1

2

HINT

x=1与x=2都是原方程的根,注意第一个问题的解

不要mod 10^9+7

1<=N<=10^18

1<=T<=1000

Source

By Wcmg


打表可得符合条件的x的二进制位没有相邻的1。

打表可得第二问答案是fib

第一问就是数位DP了…

设dp[i][0/1]表示二进制长度为i最高位是0/1的个数…

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

typedef long long LL;
const int SZ = 100;
const int INF = 1000000010;
const LL mod = 1000000007;

LL dp[SZ][2],base[SZ];

void init()
{
    base[1] = 1;
    for(int i = 2;i <= 63;i ++)
        base[i] = base[i - 1] << 1;
    dp[1][0] = 1; dp[1][1] = 1;
    for(int i = 2;i <= 63;i ++)
    {
        dp[i][0] = dp[i - 1][0] + dp[i - 1][1];
        dp[i][1] = dp[i - 1][0];
    }
}

LL work1(LL n)
{
    LL ans = 0;
    int len = 63;
    while(n < base[len]) len --;
    for(int i = 1;i < len;i ++)
        ans += dp[i][1];
    int cur = n / base[len];
    int pre = cur;
    n %= base[len];
    for(int i = len - 1;i >= 1;i --)
    {
        cur = n / base[i];
        if(cur == 1)
            ans += dp[i][0];
        if(cur && pre) break;
        pre = cur;
        n %= base[i];
    }
    return ans;
}

struct matrix{
    int n,m;
    LL num[10][10];
    matrix(int a,int b) : n(a),m(b) {memset(num,0,sizeof(num));}    
};

matrix operator *(const matrix &a,const matrix &b)
{
    matrix ans(a.n,b.m);
    for(int i = 1;i <= ans.n;i ++)
        for(int j = 1;j <= ans.m;j ++)
            for(int k = 1;k <= a.m;k ++)
                ans.num[i][j] = (ans.num[i][j] + (LL)a.num[i][k] * b.num[k][j] % mod) % mod;
    return ans;
}

matrix ksm(matrix a,LL b)
{
    matrix ans(a.n,a.m);
    for(int i = 1;i <= ans.n;i ++)
        ans.num[i][i] = 1;
    while(b)
    {
        if(b & 1) ans = ans * a;
        a = a * a;
        b >>= 1;
    }
    return ans;
}

LL work2(LL n) //fib
{
    matrix fib(2,2),ans(1,2);
    fib.num[1][1] = 1; fib.num[1][2] = 1;
    fib.num[2][1] = 1; fib.num[2][2] = 0;
    ans.num[1][1] = 1; ans.num[1][2] = 1;
    return (ans * ksm(fib,n)).num[1][1];
}

void print(LL x)
{
    for(int i = 10;i >= 0;i --)
        printf("%d",x >> i & 1);
    printf(" ");
}

int main()
{
    init();
    int T;
    scanf("%d",&T);
    while(T --)
    {
        LL n;
        scanf("%lld",&n);
        printf("%lld\n%lld\n",work1(n + 1),work2(n));
    }
    return 0;
}




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值