hdu 4035 maze 题解(期望,树形DP)

原题链接:
hdu

题意简述

l x h g w w lxhgww lxhgww在一个树上,初始在根,即 1 1 1号节点。有三种情况:

  1. e i e_i ei概率 直接胜利 (李胜利:叫我干嘛)
  2. k i k_i ki概率 回到根
  3. 否则等概率选择一个点(珂能是父亲,也珂能是儿子),继续

求胜利的期望步数。

数据

输入

多组数据。先是一个 T T T,表示 T ( T &lt; = 30 ) T(T&lt;=30) T(T<=30)组数据。
对于每一组数据,先有一个 n n n表示有 n ( 1 &lt; = n &lt; = 10000 ) n(1&lt;=n&lt;=10000) n(1<=n<=10000)个点。然后 n − 1 n-1 n1行,每行两个正整数 u , v ( 1 &lt; = u , v &lt; = n , u ! = v ) u,v(1&lt;=u,v&lt;=n,u!=v) u,v(1<=u,v<=n,u!=v)表示 u , v u,v u,v之间有一条边。再接下来 n n n行每行两个正整数 k i , e i ( 0 &lt; = k i , e i &lt; = 100 , e 1 = k 1 = 0 ) k_i,e_i(0&lt;=k_i,e_i&lt;=100,e_1=k_1=0) ki,ei(0<=ki,ei<=100,e1=k1=0),表示第 i i i个点回到根的概率和胜利的概率是 k i % , e i % k_i\%,e_i\% ki%ei%(百分数形式,即 k i 100 , e i 100 \frac{k_i}{100},\frac{e_i}{100} 100ki,100ei

输出

1 1 1开始胜利的期望步数。

样例

输入
3
3
1 2
1 3
0 0
100 0
0 100

3
1 2
2 3
0 0
100 0
0 100

6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60

思路

这个题 n n n只有 10000 10000 10000,但是 h d u hdu hdu C F CF CF的评测姬配置显然是不一样的,所以 n 2 n^2 n2或者 n 3 n^3 n3是显然过不去的。。。先声明一下。。。

好了来想正解。非常暴力的, 我们设 f ( i ) f(i) f(i)表示从 i i i开始胜利的期望步数。
那么,有三种情况:

描述 概率 步数 期望步数
直接胜利 e i e_i ei 0 0 0 0 0 0
回到 1 1 1 k i k_i ki f ( 1 ) f(1) f(1) k i f ( 1 ) k_if(1) kif(1)
别的情况 ( 1 − e i − k i ) d i \frac{(1-e_i-k_i)}{d_i} di(1eiki) ∑ i − &gt; j ( 1 + f ( j ) ) \sum\limits_{i-&gt;j}(1+f(j)) i>j(1+f(j)) ( 1 − e i − k i ) d i ∗ ( ∑ i − &gt; j ( 1 + f ( j ) ) ) \frac{(1-e_i-k_i)}{d_i}*( \sum\limits_{i-&gt;j}(1+f(j))) di(1eiki)(i>j(1+f(j)))

其中限制条件 i − &gt; j i-&gt;j i>j表示 i i i连接到 j j j d i d_i di是点 i i i的度数。

那么,根据期望的线性性,我们把最右边三个值加起来就是 f ( i ) f(i) f(i)的值了,也就是
k i f ( 1 ) + ( 1 − e i − k i ) d i ∗ ( 1 + ∑ i − &gt; j f ( j ) )    &ThinSpace; ① k_if(1)+\frac{(1-e_i-k_i)}{d_i}*(1+ \sum\limits_{i-&gt;j}f(j)) \qquad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\ \ \,① kif(1)+di(1eiki)(1+i>jf(j))  

但是我们会发现,我们是要求 f ( 1 ) f(1) f(1)的,就是要从儿子往父亲推。但是。。。我们在推 f ( i ) f(i) f(i)的时候,不仅要知道 i i

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值