目录
前言
关于python深度学习笔记整理07——tensorflow实现验证码识别,本文通过学习视频《python深度学习》整理学习笔记。视频学习地址:https://www.bilibili.com/video/BV1Wt411C75s/
一、复习回顾
卷积神经网络:
卷积层:(例如32个filter,观察窗口的大小1*1或3*3或5*5,步长1,padding="1")。这三个因素决定了这张图片进入卷积层的输出大小。注:tensorflow中要求:padding="SAME"
激活层:不用"sigmoid"函数,而使用relu的原因是:①使用"sigmoid"计算量大;②当神经网络深度较深时,"sigmoid"函数易造成梯度爆炸。
池化层:(通常地观察窗口的大小为2*2时,步长是2;但在面试题中有变化时,需具体带公式计算。)
二、验证码识别原理分析
计算机识别验证码-------->像素
常见的网页验证码由字母、噪点和干扰线组成,若能去除噪点和干扰线,能够大大降低学习的难度。很多验证码的噪点和干扰线RGB值和字母的不一致,可通过图中每处的RGB值进而识别。
N | Z | P | P< |