Python深度学习笔记07——tensorflow实现验证码识别

本文是Python深度学习笔记,通过TensorFlow讲解验证码识别。内容包括卷积神经网络的复习,如卷积层、激活层和池化层;分析验证码识别原理,讨论如何去除噪点和干扰线;并提供了案例练习,涵盖验证码图片处理和模型训练过程。
摘要由CSDN通过智能技术生成

目录

前言

一、复习回顾

二、验证码识别原理分析

三、案例练习

总结


 

前言

关于python深度学习笔记整理07——tensorflow实现验证码识别,本文通过学习视频《python深度学习》整理学习笔记。视频学习地址:https://www.bilibili.com/video/BV1Wt411C75s/

 


一、复习回顾

卷积神经网络:

卷积层:(例如32个filter观察窗口的大小1*1或3*3或5*5,步长1,padding="1")。这三个因素决定了这张图片进入卷积层的输出大小。注:tensorflow中要求:padding="SAME"

激活层:不用"sigmoid"函数,而使用relu的原因是:①使用"sigmoid"计算量大;②当神经网络深度较深时,"sigmoid"函数易造成梯度爆炸。

池化层:(通常地观察窗口的大小为2*2时,步长是2;但在面试题中有变化时,需具体带公式计算。)

二、验证码识别原理分析

计算机识别验证码-------->像素

常见的网页验证码由字母、噪点和干扰线组成,若能去除噪点和干扰线,能够大大降低学习的难度。很多验证码的噪点和干扰线RGB值和字母的不一致,可通过图中每处的RGB值进而识别。

N Z P P<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值