自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI魔女Lilith的博客

您好!我是AI魔女Lilith,一名深耕人工智能领域的技术博主,致力于用通俗易懂的语言揭开AI的神秘面纱,让前沿科技触手可及。

  • 博客(148)
  • 收藏
  • 关注

原创 2025版-通义灵码安装指南:AI助你编码效率飙升!

《通义灵码:AI赋能的高效开发利器》 通义灵码是阿里云推出的智能编码辅助工具,融合通义大模型技术,提供实时续写、自然语言生成代码、单元测试生成等核心功能。安装简单,支持主流IDE,只需登录阿里云账号即可激活使用。它能显著提升编码效率,通过智能补全、代码优化建议等功能帮助开发者解决"屎山代码"问题,还能生成详细注释和单元测试。其智能问答功能可快速解答开发难题,支持一键插入解决方案代码。作为2025年主流AI开发工具,通义灵码正成为提升开发质量和效率的必备助手。

2025-05-26 11:40:19 1851

原创 2025大模型技术架构揭秘:GPT-4、Gemini、文心等九大模型核心技术对比与实战选型指南

本文深入分析了九大主流大模型的技术架构、应用场景及成本优化策略。核心技术包括GPT-4的稀疏MoE、Gemini的Pathways架构等,各模型在金融合规、工业质检、多语言客服等20多个场景中展现出不同的性能优势。成本优化方面,DeepSeek通过动态MoE架构将推理成本降低至GPT-3的1/8。文章还提供了开发者选型指南,建议根据多模态需求、中文能力、成本等因素选择合适模型。总体来看,2025年大模型竞争已进入“场景深耕期”,开发者需综合考虑场景匹配度、总拥有成本和合规风险,选择最优技术方案。

2025-05-21 19:50:18 1979

原创 【AI面试秘籍】| 第7期:多轮对话如何实现长期记忆?高频考点解析+代码实战

本文详细解析了AI面试中关于长期记忆系统的考察重点和技术原理。面试官主要关注候选人对技术瓶颈的认知、架构设计能力、工程实践思维以及前沿技术的敏感度。文章指出传统对话系统存在上下文长度限制和信息衰减问题,并提出了长期记忆系统的三层架构:记忆写入、存储和检索。此外,文章还介绍了六大核心方案,包括知识图谱记忆增强、记忆分层存储架构和动态记忆权重算法,并提供了代码示例和性能优化方法。最后,文章列出了工程落地的Checklist和高频追问问题库,帮助候选人全面准备面试。

2025-05-13 10:42:02 2129

原创 用GPT-4o生成与明星的“合照“,这些干货技巧你必须知道(附万能提示词模板)

        当GPT-4o开始故意制造「废片」,摄影的真实性正在被重新定义。本文将揭秘AI生成"伪实拍"的核心逻辑:通过刻意模拟手抖、过曝、尴尬构图等人类拍摄缺陷,竟比精修大片更显真实。        文内含百万浏览的提示词模板+CCD相机风格调参指南,教你用AI复刻「妈妈相机里的老照片质感」。

2025-05-08 10:36:55 2701

原创 【2025全网最详教程】手把手教你跨平台配置ChatBox接入Claude3/GPT-4o/DeepSeek等主流大模型

API Key:此项配置填写在官网创建API令牌,创建API令牌步骤请参考API Host:此项配置填写https://yibuapi.com/v1查        你是否还在为多设备切换AI模型烦恼?本文带来ChatBox跨平台终极配置方案,无需代码基础,一键打通Claude 3/GPT-4o/DeepSeek等12+顶尖模型!亲测Windows/Mac/移动端全设备兼容。无论你是需要200K长文本处理的学术党,还是追求实时代码生成的开发者,这篇保姆级教程将彻底释放你的AI生产看支持的模型请参考这篇教程。

2025-04-14 11:49:48 2065

原创 国产大模型崛起:DeepSeek R1 和 Qwen(通义千问)为什么这么牛?

近年来,国产大语言模型(LLM)发展迅猛,其中 DeepSeek R1 和 通义千问(Qwen) 系列表现尤为亮眼,频频登上各大榜单前列。它们不仅中文能力顶尖,在代码、数学、逻辑推理等硬核领域也毫不逊色于国际顶尖模型。今天我们就来深度剖析一下,这两大国产模型究竟“牛”在哪里!

2025-06-12 15:13:01 849

原创 大模型Prompt|提示工程的10个常见设计模式

本文介绍了10种提升大模型交互效果的实用提示设计模式。包括:1)人物角色任务模式,通过设定具体角色引导模型输出;2)食谱模式,提供分步操作指南;3)反向查询模式,根据答案反推问题;4)输出自动化模式,规范输出格式;5)思维链模式,展示推理过程;6)图谱辅助模式,利用结构化数据;7)事实检查模式,验证信息准确性;8)反射模式,自我评估改进;9)问题精炼模式,澄清模糊问题;10)部分拒绝模式,选择性处理请求。这些模式可单独或组合使用,以优化大模型在不同场景中的表现。

2025-06-12 11:10:41 734

原创 【AI面试秘籍】| 第27期:如何解决agent效率低下?面试官最想听的7大能力解析+系统化解决方案

大模型Agent应用爆发,但效率瓶颈却常拖后腿——响应慢、资源吃紧、体验打折!面试被问“如何优化Agent效率”,你是否还停留在泛泛而谈?本文直击痛点,拆解面试官最想听的7大核心能力(结构化思维、技术深度、数据驱动...),并提供一个可落地的系统化解决框架(精准定位->分层优化->长效保障)。助你不仅答好面试题,更能掌握提升Agent性能的实战方法论!干货满满,速来解锁!

2025-06-11 11:46:31 783

原创 RAG的5种高效切分策略:提升检索增强生成效果的关键

探讨构建RAG应用时的五种主流文本切分策略:1)固定大小切分简单易用但可能破坏语义;2)语义切分保持完整性但需调试阈值;3)递归切分灵活平衡语义与大小;4)基于文档结构的切分依赖文档质量;5)LLM切分准确性高但成本昂贵。建议根据场景需求选择策略,或采用混合方案,如先结构切分再语义处理,以实现最佳效果。每种方法各有优劣,需权衡语义完整性与实现成本。

2025-06-11 09:54:47 419

原创 n8n 中文系列教程_26.n8n对接微信-玩转AI机器人

是不是总觉得微信机器人只能发发消息、回回话有点单调?想不想让它更“聪明”、更自动化?结合 n8n ,打造一个功能强大的多步AI代理,让你的微信机器人不再是“傻白甜”。

2025-06-10 16:22:32 735

原创 AI的“秘密武器”:强化学习,让大模型不再“跑偏”!

你的GPT为啥有时候会“胡说八道”?大模型怎么才能更懂你的心?这背后藏着个AI的“秘密武器”——强化学习!它不仅让AI学会了自己玩游戏,更能把那些“三观不正”的大模型给“掰”回来,想知道怎么回事吗?

2025-06-10 13:47:27 958

原创 构建你的专属AI大脑:深入理解个人知识库(PKB)在LLM应用中的核心价值

在当前大语言模型(LLM)飞速发展的时代,我们正迎来一个全新的信息交互范式。然而,通用型大模型在处理个人化、非公开或专业性极强的信息时,往往力有不逮。这正是个人知识库(Personal Knowledge Base, PKB)大显身手之处。简单来说,个人知识库是大语言模型应用中的一个专属“记忆仓库”和“信息池”。

2025-06-09 10:05:49 990

原创 PS修图1小时→GPT-4o 10秒!画图保姆教程:10大神操作+防坑指南

给大家分享下关于4o的10 个最好用的使用示例,向你证明它确实是太好用了!

2025-06-09 09:55:11 1997

原创 大模型“超能力”揭秘:什么是AI的“涌现”?

近年来,AI领域最令人兴奋的现象莫过于大模型的“涌现”能力。当模型规模达到一定程度,它似乎一夜之间拥有了过去难以想象的“超能力”。本文将带你深入理解什么是涌现,它为何出现,以及它在大模型中的典型体现。

2025-06-08 13:30:17 659

原创 MoE黑科技:如何让万亿大模型跑得比百亿模型还快?

大模型参数飙升,算力成本成为难以承受之重?MoE(混合专家模型)正是破局的关键“效率引擎”!它像一支永不内耗的“学霸特工队”,通过智能路由层精准调度,每次只激活最擅长的“专家”处理任务(如代码专家写程序,文学专家作诗),其他成员“躺平”省资源。这种“稀疏激活”机制,让模型总参数量可达万亿级别,但实际计算开销却神奇地保持在百亿级别(如Switch Transformer计算量仅为1/3)!本文将深入浅出,为你揭秘MoE的运作原理、核心优势及其如何成为支撑GPT-4等巨无霸高效运行的核心黑科技。

2025-06-08 11:39:56 1187

原创 什么是预训练?深入解读大模型AI的“高考集训”

你是否好奇,那些能写诗、会绘画、甚至能辅助医疗诊断的AI大模型,它们是如何炼成的?它们并非一夜之间学会十八般武艺,而是经历了一场类似人类“高考集训”的严苛训练。这个过程,就是预训练。

2025-06-07 21:52:42 1257

原创 RLHF:让AI学会“察言观色”,成为更懂你的智能伙伴!

你是否曾好奇,为什么像 ChatGPT 这样的人工智能能够如此精准地理解你的意图,甚至像人类一样进行自然流畅的对话?答案可能就藏在 **RLHF(基于人类反馈的强化学习)**这项颠覆性技术之中。它不仅让 AI 学会了“说话”,更教会了 AI 如何“察言观色”,将人类的偏好和价值观融入其每一次的输出。

2025-06-07 21:13:22 889

原创 AI 的“火眼金睛”:一文读懂注意力机制!

你有没有想过,AI 是怎么做到在海量信息中一眼“抓住重点”的?就像我们读书会用荧光笔划出关键句一样,大模型也有一项“魔法”让它们变得无比聪明。这项魔法,就是今天我们要一起“吃透”的注意力机制!

2025-06-06 10:51:35 667

原创 AI也能像学霸一样思考?揭秘思维链:让大模型告别“瞎蒙”

你是否好奇,AI在处理复杂问题时,为什么有时会“信口开河”?又如何能像人类一样,一步步地分析、推理,最终给出准确的答案?本文将带你深入了解**思维链(Chain of Thought, CoT)**这一颠覆性技术。它让大型语言模型不再仅仅是“超级押题王”,而是学会了像学霸解题一样,将“思考过程”完整呈现,从而大幅提升推理的准确性和逻辑性。准备好揭开AI“显式思考”的神秘面纱了吗?

2025-06-06 09:55:22 1136

原创 【AI面试秘籍】| 第26期:字节大模型面试-为什么大模型要用投机采样?

摘要:投机采样(Speculative Sampling)是一种新兴的大模型推理优化技术,通过"草稿模型预测+主模型验证"的机制加速文本生成。其核心思想是利用小型草稿模型快速预测多个token,再由主模型并行验证,有效减少自回归计算的延迟。该技术可实现2-4倍加速,同时保持生成质量,已成为大厂面试热点。关键考量包括草稿模型选择、预测步长优化、接受率提升等,并能与VLLM等推理框架结合使用。投机采样在不损失质量的前提下显著提升推理效率,是当前大模型优化的重要方向。

2025-06-05 10:22:18 1040

原创 深度解析 A2A 协议:大模型时代的“抱团”协作新范式

AI协作新范式:A2A协议赋能多智能体协同 在大模型时代,A2A(Agent-to-Agent)协议成为提升AI协作效率的关键技术。该协议定义了智能体间的通信规则、任务分配机制和冲突解决方案,使多个AI能像外卖团队一样高效协同工作。相比MCP协议关注语义理解,A2A更侧重通信层面的智能体交互。其核心价值在于:提升并行处理效率、融合群体智能、适应复杂场景并突破单体AI局限。随着分布式AI系统的发展,A2A协议将成为构建更强大人工智能应用的重要技术基础。

2025-06-05 10:09:22 986

原创 大模型能力评估基石:深入理解Benchmark

本文系统介绍了Benchmark(基准测试)的概念、组成要素及其重要性。Benchmark作为评估大语言模型性能的标准测试集,包含任务定义、数据集、评价指标和基线模型四大核心要素,可用于客观比较不同模型的能力。文章指出Benchmark对推动AI技术发展具有关键作用,但也面临"应试"风险、数据污染等挑战。随着技术进步,需要不断更新Benchmark以应对模型性能提升带来的"天花板效应"。理解Benchmark的构成与局限对AI研究者至关重要。

2025-06-04 10:46:18 1245

原创 深入理解F1值:分类模型评估不可或缺的利器

在机器学习的分类任务中,准确率(Accuracy)往往是我们最先关注的指标。然而,单一的准确率指标在某些场景下可能会误导我们对模型性能的判断,尤其是在数据不平衡的情况下。本文将带你深入了解为什么F1值如此重要,以及它与精确率(Precision)、召回率(Recall)之间的关系。

2025-06-04 10:24:10 910

原创 模型蒸馏:让“笨学生”也能偷师“学霸”的AI秘籍!

在人工智能的世界里,我们常常面临这样的困境:大模型虽能力超群,却过于“笨重”;小模型虽轻巧灵活,却又力不从心。如何才能让小模型也能拥有大模型的智慧,同时保持高效的运行速度?答案就在“模型蒸馏”技术中!本文将深入浅出地揭示模型蒸馏的奥秘,带你了解这项让“笨学生”也能偷学“学霸”解题思路的AI“作弊”技巧,让你的AI应用又快又准。

2025-06-03 11:00:47 855

原创 解锁大模型创造力:你真的懂Temperature吗?

大型语言模型(LLM)的兴起彻底改变了我们与AI互动的方式。它们不仅能理解复杂指令,还能进行内容创作、代码编写甚至头脑风暴。但你是否曾好奇,为什么有时候模型像个严谨的“学究”,给出精准无误的答案;而另一些时候,它又化身“醉酒的诗人”,迸发出天马行空的创意?这背后隐藏的秘密,就在于一个至关重要的参数——温度系数(Temperature)。

2025-06-03 10:47:53 1850

原创 MCP (模型上下文协议):AI界的“USB-C”标准,开启大模型应用新纪元

今天我们来聊聊一个可能深刻改变 AI 应用开发模式的新技术——MCP (Model Context Protocol,模型上下文协议)。这是由 Anthropic 公司(旗下拥有知名大模型 Claude)提出的一项旨在统一大模型与外部世界交互方式的“万能接口”。不妨把它想象成 AI 领域的 USB-C,目标是为大模型、外部工具、数据和服务之间建立一套标准化的通信桥梁。

2025-06-02 16:32:41 1101

原创 模型训练的“隐形杀手”——过拟合!全面解析与实用应对方案

摘要:本文深入解析机器学习中的过拟合问题,指出其表现为训练数据优异但测试数据不佳的现象,类比为"死记硬背"的学习方式。在大模型时代,过拟合更具隐蔽性,可能表现为不合逻辑的生成内容。主要原因包括数据量不足、模型复杂度过高和训练时间过长。与欠拟合对比后,文章提出实用解决方案:增加数据量、数据增强、选择合适模型复杂度、正则化、早停法和交叉验证等。理解并应对过拟合是提升模型泛化能力的关键。(149字)

2025-06-02 16:25:41 1015

原创 【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析

RAG技术痛点与优化方案解析 摘要: RAG技术通过引入外部知识库解决LLM的知识局限性,但在实际应用中存在四大痛点:1)检索阶段面临召回率低、语义理解不足等问题,可通过混合检索、查询重写/扩展、文档分块优化等方案改进;2)生成阶段存在信息融合困难、忠实性等问题,需优化提示工程、上下文管理及后处理机制;3)评估环节需建立分阶段指标体系和高质量评测数据集;4)系统工程方面需关注模块化设计、向量数据库选型和成本优化。通过针对性技术方案可有效提升RAG系统性能。

2025-06-01 14:12:24 894

原创 初学者如何微调大模型?从0到1详解

本文将手把手带你从0到1,详细解析初学者如何微调大模型,让你也能驾驭这些强大的AI工具。

2025-06-01 13:51:46 1046

原创 Llama家族大盘点:从Llama到各大衍生模型,它们有何神通?差异何在?

Meta开源的Llama系列大语言模型已成为开源社区的重要基础,催生出一系列优秀的衍生模型。本文梳理了Llama生态的核心模型:Llama1/2作为通用基座模型;Alpaca采用指令微调;Vicuna优化对话能力;Guanaco验证QLoRA高效微调;WizardLM专注复杂指令;Orca模仿大模型推理;CodeLlama专攻代码任务。各模型在定位、核心技术、数据侧重等方面各有特色,用户可根据需求选择基础开发、对话交互、复杂推理或编程辅助等不同场景的适配模型。Llama生态的发展展示了开源社区强大的创新力,

2025-05-31 11:31:45 723

原创 别再傻傻分不清!一文读懂“AI+”与“+AI”的本质区别和应用前景

《“AI+”与“+AI”:两种AI赋能的战略路径解析》摘要 “AI+”和“+AI”代表AI应用的两种范式。“AI+”以技术为驱动,通过AI创新开拓全新市场(如生成式AI、自动驾驶),具有颠覆性但风险较高;“+AI”以业务为导向,将AI嵌入现有流程(如智能制造、智慧医疗),实现渐进式优化,风险较低但需业务理解。二者并非对立,成熟企业的AI战略往往需要兼顾两种模式:用“AI+”布局未来,用“+AI”提升当下。选择路径时需评估企业技术储备、业务痛点和风险承受能力,技术型公司可侧重“AI+”,传统企业宜优先“+AI

2025-05-31 11:27:12 1030

原创 程序员必备!最全技术文档写作指南

技术文档是软件开发与维护的关键组成部分,旨在满足不同用户需求。它涵盖用户手册、API文档、安装手册、开发者文档、故障文档、白皮书等常见类型。此外,系统设计文档(SDD)、架构决策记录(ADRs) 和运行手册(Runbook) 在现代开发中日益重要。这些文档贯穿软件生命周期,并非事后补充,而是与代码同步演进的“文档即代码”理念的体现。针对最终用户,解释产品功能和使用方法,侧重操作指引和易用性。详细介绍应用程序编程接口的用法和操作,强调精确性和完整性,供开发人员集成和调用。

2025-05-30 10:53:27 1508

原创 n8n 中文系列教程_25.在n8n中调用外部Python库

在n8n中使用Python处理复杂任务时,内置的Code节点由于运行在沙盒环境中,无法直接调用外部Python库(如pandas、requests等),限制了工作流的扩展能力。本文将介绍一种持久化解决方案:通过Docker挂载目录+虚拟环境,实现在n8n中自由安装并调用任意Python库,同时确保容器升级后环境不丢失。无论是数据分析、API交互还是机器学习,均可通过此方法无缝集成到自动化流程中。

2025-05-30 10:07:39 796

原创 【AI面试秘籍】| 第24期:Transformers / LLM的词表应该选多大?

词表(Vocabulary)大小是训练Transformers和大型语言模型(LLM)时的关键参数,需权衡模型性能、计算效率与内存占用。词表本质决定了模型处理的token粒度(字、词或子词),影响模型覆盖率、参数量及计算复杂度。选择时需考虑任务特性(通用/领域)、语言形态、语料规模及资源限制,通常子词词表在30k-100k之间(如BERT用30k,GPT-3约50k)。经验法则是覆盖语料99%以上词频,并控制平均token数量以平衡信息密度。面试中应展示对权衡因素(OOV率、Softmax计算)的理

2025-05-29 11:33:16 1092

原创 干货分享:如何打造一份专业、易用的技术文档?(附模板与示例)

写出清晰、实用、易维护的文档,绝非易事! 你是否也曾为文档散乱、过时、晦涩难懂而头疼?本文手把手教你打造专业级技术文档,从目标规划、结构设计,到提升可读性、自动化维护,附赠可直接套用的结构模板与API文档代码示例。掌握这份核心能力,让你的知识传承更高效,团队协作更顺畅!

2025-05-29 10:48:58 766

原创 【建议收藏】学习大模型的最佳路径:从入门到精通的清晰指南

本文系统规划了学习大型语言模型(LLM)的完整路径,从基础数学、编程和深度学习知识,到Transformer架构、主流LLM模型解析,再到实践应用和工具生态。学习路线分为六个阶段:基础能力储备、核心技术栈掌握、模型架构与变种研究、实际应用开发、工具框架学习和前沿社区参与。重点涵盖了Python编程、深度学习基础、注意力机制、预训练微调技术、提示工程、模型部署等核心内容,推荐使用PyTorch、HuggingFace等工具链。文章强调理论实践结合,建议通过论文阅读、开源项目等方式保持技术更新,为开发者提供了一

2025-05-28 11:27:25 1203

原创 【AI面试秘籍】| 第23期:大模型分布式训练原理,你真的懂吗?

本文系统解析了大模型分布式训练的核心原理,主要解决模型参数量大、训练数据多的挑战。详细介绍了三种主流并行策略:数据并行(模型复制、数据分片)、张量并行(层内参数切分)和流水线并行(模型分层处理),并分析了各自的优劣势及适用场景。重点探讨了混合并行方案和ZeRO等优化技术如何降低显存占用。文章还总结了通信开销、负载均衡等关键挑战,并提供了面试应答策略和知识点梳理,帮助读者全面理解大模型训练的基础设施原理。

2025-05-28 11:06:47 1027

原创 【AI面试秘籍】| 第22期:进行SFT时,基座模型选用Chat还是Base模型?

本文探讨了有监督微调(SFT)过程中基座模型的选择策略。文章对比了Chat模型和Base模型的特点:Chat模型适合对话任务,已具备对话能力但灵活性较低;Base模型通用性强但在对话方面需要更多训练。选择依据应考虑任务类型、数据集特点、计算资源和安全性需求。对话类任务建议选用Chat模型,非对话任务推荐Base模型。文章还提供了三个典型案例建议,强调数据质量、评估迭代和多轮对话能力的重要性。最后指出面试中可能考察的要点,包括模型特点理解、场景分析能力和SFT流程掌握程度,强调应根据实际需求综合权衡模型选择。

2025-05-27 10:09:16 725

原创 【干货】大模型应用十种架构模式深度解析,终于有人说清楚了!

本文深入解析大模型应用的十大主流架构模式,包括API集成、私有化部署、RAG增强、智能代理等,剖析每种模式的核心概念、优劣势及适用场景。文章强调架构演进需解决性能、成本、数据安全和模型可控性等关键挑战,并提供技术选型建议与实现干货,如高效微调技术、缓存优化策略等。作者建议根据业务需求组合多种模式,从小规模起步并持续迭代,同时关注成本效率与数据安全。本文为大模型应用开发者提供了系统性的架构设计指导,助力构建高性能、可扩展的智能化解决方案。

2025-05-27 09:55:16 773

原创 RAG进阶必看!知识图谱如何“点石成金”,让LLM回答更精准?

大型语言模型(LLM)的智能问答能力令人惊叹,但其“幻觉”和领域知识不足仍是痛点。RAG(检索增强生成)范式应运而生,试图为LLM注入外部知识。然而,当问题复杂度上升、涉及多跳推理时,传统RAG的局限性便显露无疑。别担心,本文将为你揭示一种突破性的解决方案——KG-RAG,它巧妙地将知识图谱的结构化优势融入RAG流程,用最简洁的方式,让你的LLM不再“一知半解”,实现知识召回率的飞跃!

2025-05-26 10:34:16 995

n8n 中文系列教程-23. 实战篇如何零成本搭建Deep Research类AI工具

n8n 中文系列教程-23. 实战篇如何零成本搭建Deep Research类AI工具

2025-05-16

n8n 中文系列教程-19. 制作你的第一个 n8n 工作流

n8n 中文系列教程-19. 制作你的第一个 n8n 工作流

2025-05-05

n8n 中文系列教程-12. 实战篇基于 RSS 的智能阅读分流器

你可以通过在 n8n 中新建一个 Workflow 然后选择右上角的 Import from File 来导入这个示例 Workflow。但需要注意的是,它无法自动执行,你需要重新配置 Google Gemini 的凭据和 Google Sheets 的凭据才能使用。

2025-04-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除