第一题
:剑指 Offer 40. 最小的k个数
输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 1:
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
示例 2:
输入:arr = [0,1,2,1], k = 1
输出:[0]
限制:
0 <= k <= arr.length <= 10000
0 <= arr[i] <= 10000
解法
:简单粗暴调用python列表的sort()方法或者sorted()函数,再返回前k个数字即可。
代码
:
class Solution :
def getLeastNumbers ( self, arr: List[ int ] , k: int ) - > List[ int ] :
arr. sort( )
return arr[ : k]
第二题
:2562. 找出数组的串联值
给你一个下标从 0 开始的整数数组 nums 。
现定义两个数字的 串联 是由这两个数值串联起来形成的新数字。
例如,15 和 49 的串联是 1549 。
nums 的 串联值 最初等于 0 。执行下述操作直到 nums 变为空:
如果 nums 中存在不止一个数字,分别选中 nums 中的第一个元素和最后一个元素,将二者串联得到的值加到 nums 的 串联值 上,然后从 nums 中删除第一个和最后一个元素。
如果仅存在一个元素,则将该元素的值加到 nums 的串联值上,然后删除这个元素。
返回执行完所有操作后 nums 的串联值。
示例 1:
输入:nums = [7,52,2,4]
输出:596
解释:在执行任一步操作前,nums 为 [7,52,2,4] ,串联值为 0 。
- 在第一步操作中:
我们选中第一个元素 7 和最后一个元素 4 。
二者的串联是 74 ,将其加到串联值上,所以串联值等于 74 。
接着我们从 nums 中移除这两个元素,所以 nums 变为 [52,2] 。
- 在第二步操作中:
我们选中第一个元素 52 和最后一个元素 2 。
二者的串联是 522 ,将其加到串联值上,所以串联值等于 596 。
接着我们从 nums 中移除这两个元素,所以 nums 变为空。
由于串联值等于 596 ,所以答案就是 596 。
示例 2:
输入:nums = [5,14,13,8,12]
输出:673
解释:在执行任一步操作前,nums 为 [5,14,13,8,12] ,串联值为 0 。
- 在第一步操作中:
我们选中第一个元素 5 和最后一个元素 12 。
二者的串联是 512 ,将其加到串联值上,所以串联值等于 512 。
接着我们从 nums 中移除这两个元素,所以 nums 变为 [14,13,8] 。
- 在第二步操作中:
我们选中第一个元素 14 和最后一个元素 8 。
二者的串联是 148 ,将其加到串联值上,所以串联值等于 660 。
接着我们从 nums 中移除这两个元素,所以 nums 变为 [13] 。
- 在第三步操作中:
nums 只有一个元素,所以我们选中 13 并将其加到串联值上,所以串联值等于 673 。
接着我们从 nums 中移除这个元素,所以 nums 变为空。
由于串联值等于 673 ,所以答案就是 673 。
提示:
1 <= nums.length <= 1000
1 <= nums[i] <= 10^4
解法
:写一个循环进行首位数字进行拼接并转为int类型的,最后循环完毕若是元素个数偶数个则直接返回结果,若是奇数个,则再加上一个中间位置的数即可。
代码
:
class Solution :
def findTheArrayConcVal ( self, nums: List[ int ] ) - > int :
sum = 0
for i in range ( len ( nums) // 2 ) :
sum += int ( str ( nums[ i] ) + str ( nums[ len ( nums) - i - 1 ] ) )
if len ( nums) % 2 == 0 :
return sum
else :
return sum + nums[ len ( nums) // 2 ]
第三题
:136. 只出现一次的数字
给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
示例 1 :
输入:nums = [2,2,1]
输出:1
示例 2 :
输入:nums = [4,1,2,1,2]
输出:4
示例 3 :
输入:nums = [1]
输出:1
提示:
1 <= nums.length <= 3 * 10^4
-3 * 10^4 <= nums[i] <= 3 * 10^4
除了某个元素只出现一次以外,其余每个元素均出现两次。
解法1
:若不考虑线性时间复杂度,可以将每个数字都放到字典中存储,元素作为key,出现的次数作为value,遍历完一次列表再返回值为1的对应的键的值即可。
代码1
:
class Solution :
def singleNumber ( self, nums: List[ int ] ) - > int :
cnt_dict = { }
for i in nums:
if i not in cnt_dict. keys( ) :
cnt_dict[ i] = 0
else :
cnt_dict[ i] += 1
return min ( cnt_dict. items( ) , key= lambda x: x[ 1 ] ) [ 0 ]
解法2
:若考虑线性时间复杂度,可以使用异或的原理进行解决。
交换律:a ^ b ^ c <=> a ^ c ^ b
任何数于0异或为任何数 0 ^ n => n
相同的数异或为0: n ^ n => 0
代码2
:
class Solution :
def singleNumber ( self, nums: List[ int ] ) - > int :
res = 0
for i in nums:
res ^ = i
return res
第三题
:169. 多数元素
给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入:nums = [3,2,3]
输出:3
示例 2:
输入:nums = [2,2,1,1,1,2,2]
输出:2
提示:
n == nums.length
1 <= n <= 5 * 10^4
-10^9 <= nums[i] <= 10^9
解法
:如上题思路所述可以将每个数字都放到字典中存储,元素作为key,出现的次数作为value,遍历完一次列表再返回值最大的对应的键的值即可。
代码
:
class Solution :
def majorityElement ( self, nums: List[ int ] ) - > int :
num_dict = { }
for ele in nums:
if ele not in num_dict. keys( ) :
cnt = 1
num_dict[ ele] = cnt
else :
num_dict[ ele] += 1
max_key = max ( num_dict. items( ) , key= lambda x: x[ 1 ] ) [ 0 ]
return max_key