Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
这道题和TwoSum的思路一致,利用双指针,双向向中间靠拢。依据题目的意思,首先要保证组合结果有序,所以首先应该对nums排序,其次是,对于nums[i]中的每一个数,在[i + 1, high]的范围内,找两个数,使其和为0 - nums[i], 这一步应该用到Two,但要做修改去重,去重的依据是,相同的数只要计算一次,不能多次计算。题目的重点应该就是在如何去重上。
class Solution { public: //类似于Two Sum,对于每一个给定的nums[i],查找是否存在另外的两个数,使得 nums[i] + nums[j] + nums[k] = 0; //因为最后的结果要有序,所以先对nums排序,使其有序;题目的关键点是如何避免重复计算,即避免出现重复的(a, b, c) //这不但可以达到输出的要求,还可以减少计算 void twoSum(vector<int> &nums, int n, int curStart, int target, vector<vector<int>> &ans) { int low = curStart, high = n - 1; while(low < high) { if((nums[low] + nums[high]) == target) { vector<int> tmpVec; tmpVec.push_back(0 - target); tmpVec.push_back(nums[low]); tmpVec.push_back(nums[high]); ans.push_back(tmpVec); int tmps = nums[low]; while(low < high && nums[low] == tmps) ++low; tmps = nums[high]; while(low < high && nums[high] == tmps) --high; } else if((nums[low] + nums[high]) < target) { int tmps = nums[low]; while(low < high && nums[low] == tmps) ++low; } else { int tmps = nums[high]; while(low < high && nums[high] == tmps) --high; } } } vector<vector<int>> threeSum(vector<int>& nums) { int len = nums.size(); vector<vector<int>> ans; if(len < 3) return ans; sort(nums.begin(), nums.end()); int i = 0; while(i < len) { int tmptarget = 0 - nums[i]; twoSum(nums, len, i + 1, tmptarget, ans); int tmps = nums[i]; while(i < len && nums[i] == tmps) ++i; } return ans; } };