算法:三数之和(3sum)。

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例

给定数组 nums = [-1, 0, 1, 2, -1, -4],

满足要求的三元组集合为:
[
  [-1, 0, 1],
  [-1, -1, 2]
]

前言

本题与 两数之和 类似,是非常经典的面试题,但是做法不尽相同。

方法:排序 + 双指针

题目中要求找到所有「不重复」且和为 0 的三元组,这个「不重复」的要求使得我们无法简单地使用三重循环枚举所有的三元组。这是因为在最坏的情况下,数组中的元素全部为 0,即

[0, 0, 0, 0, 0, ..., 0, 0, 0]

任意一个三元组的和都为 0。如果我们直接使用三重循环枚举三元组,会得到 O(N^3) 个满足题目要求的三元组(其中 N 是数组的长度)时间复杂度至少为 O(N^3)。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。

「不重复」的本质是什么?我们保持三重循环的大框架不变,只需要保证:

  • 第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;
  • 第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。

也就是说,我们枚举的三元组 (a, b, c) 满足 a≤b≤c,保证了只有 (a, b, c) 这个顺序会被枚举到,而 (b, a, c)、(c, b, a) 等等这些不会,这样就减少了重复。要实现这一点,我们可以将数组中的元素从小到大进行排序,随后使用普通的三重循环就可以满足上面的要求。

同时,对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。举个例子,如果排完序的数组为

[0, 1, 2, 2, 2, 3]
 ^  ^  ^

我们使用三重循环枚举到的第一个三元组为 (0, 1, 2),如果第三重循环继续枚举下一个元素,那么仍然是三元组 (0, 1, 2),产生了重复。因此我们需要将第三重循环「跳到」下一个不相同的元素,即数组中的最后一个元素 3,枚举三元组 (0, 1, 3)。

下面给出了改进的方法的伪代码实现:

nums.sort()
for first = 0 .. n-1
    // 只有和上一次枚举的元素不相同,我们才会进行枚举
    if first == 0 or nums[first] != nums[first-1] then
        for second = first+1 .. n-1
            if second == first+1 or nums[second] != nums[second-1] then
                for third = second+1 .. n-1
                    if third == second+1 or nums[third] != nums[third-1] then
                        // 判断是否有 a+b+c==0
                        check(first, second, third)

这种方法的时间复杂度仍然为 O(N^3),毕竟我们还是没有跳出三重循环的大框架。然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素 a 和 b,那么只有唯一的 c 满足 a+b+c=0。当第二重循环往后枚举一个元素 b′时,由于 b′>b,那么满足 a+b′ +c′=0 的 c′一定有 c' < c,即 c′在数组中一定出现在 c 的左侧。也就是说,我们可以从小到大枚举 b,同时从大到小枚举 c,即第二重循环和第三重循环实际上是并列的关系。

有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,从而得到下面的伪代码:

nums.sort()
for first = 0 .. n-1
    if first == 0 or nums[first] != nums[first-1] then
        // 第三重循环对应的指针
        third = n-1
        for second = first+1 .. n-1
            if second == first+1 or nums[second] != nums[second-1] then
                // 向左移动指针,直到 a+b+c 不大于 0
                while nums[first]+nums[second]+nums[third] > 0
                    third = third-1
                // 判断是否有 a+b+c==0
                check(first, second, third)

这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从 O(N^2) 减少至 O(N)。为什么是 O(N) 呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的 bb),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为 O(N),均摊下来,每次也向左移动一个位置,因此时间复杂度为 O(N)。

注意到我们的伪代码中还有第一重循环,时间复杂度为 O(N),因此枚举的总时间复杂度为 O(N^2)。由于排序的时间复杂度为 O(N log N),在渐进意义下小于前者,因此算法的总时间复杂度为 O(N^2)。

上述的伪代码中还有一些细节需要补充,例如我们需要保持左指针一直在右指针的左侧(即满足 b≤c),具体可以参考下面的代码,均给出了详细的注释。

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        List<List<Integer>> ans = new ArrayList<List<Integer>>();
        // 枚举 a
        for (int first = 0; first < n; ++first) {
            // 需要和上一次枚举的数不相同
            if (first > 0 && nums[first] == nums[first - 1]) {
                continue;
            }
            // c 对应的指针初始指向数组的最右端
            int third = n - 1;
            int target = -nums[first];
            // 枚举 b
            for (int second = first + 1; second < n; ++second) {
                // 需要和上一次枚举的数不相同
                if (second > first + 1 && nums[second] == nums[second - 1]) {
                    continue;
                }
                // 需要保证 b 的指针在 c 的指针的左侧
                while (second < third && nums[second] + nums[third] > target) {
                    --third;
                }
                // 如果指针重合,随着 b 后续的增加
                // 就不会有满足 a+b+c=0 并且 b<c 的 c 了,可以退出循环
                if (second == third) {
                    break;
                }
                if (nums[second] + nums[third] == target) {
                    List<Integer> list = new ArrayList<Integer>();
                    list.add(nums[first]);
                    list.add(nums[second]);
                    list.add(nums[third]);
                    ans.add(list);
                }
            }
        }
        return ans;
    }
}

复杂度分析

  • 时间复杂度:O(N^2),其中 N 是数组 nums 的长度。
  • 空间复杂度:O(log N)。我们忽略存储答案的空间,额外的排序的空间复杂度为 O(log N)。然而我们修改了输入的数组 nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了 nums 的副本并进行排序,空间复杂度为 O(N)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值