Offer68II.二叉树的最近公共祖先——简单

一、题目

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,
满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]

示例 1:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
 

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。

在这里插入图片描述

二、思路(后序遍历 DFS )

1.祖先的定义: 若节点 p 在节点 root 的左(右)子树中,或 p=root ,则称 root 是 p 的祖先。
2.最近公共祖先的定义: 设节点 root 为节点 p,q 的某公共祖先,若其左子节点 root.left 和右子节点 root.right 都不是 p,q 的公共祖先,则称 root 是 “最近的公共祖先” 。
3.根据以上定义,若 rootroot 是 p, qp,q 的 最近公共祖先 ,则只可能为以下情况之一:

  • p 和 q 在 root 的子树中,且分列 root 的 异侧(即分别在左、右子树中);
  • p=root ,且 q 在 root 的左或右子树中;
  • q=root ,且 p 在 root 的左或右子树中;

在这里插入图片描述
考虑通过递归对二叉树进行后序遍历,当遇到节点 p 或 q 时返回。从底至顶回溯,当节点 p,q 在节点 root 的异侧时,节点 root 即为最近公共祖先,则向上返回 root 。
4.递归解析:

  1. 终止条件:
  • 当越过叶节点,则直接返回 null ;
  • 当 root 等于 p,q ,则直接返回 root ;
  1. 递推工作:
  • 开启递归左子节点,返回值记为 left ;
  • 开启递归右子节点,返回值记为 right ;
  1. 返回值: 根据 left 和 right ,可展开为四种情况;
  • 当 left 和 right 同时为空 :说明 root 的左 / 右子树中都不包含 p,q ,返回 null ;
  • 当 left 和 right 同时不为空 :说明 p,q 分列在 root 的 异侧 (分别在 左 / 右子树),因此 root 为最近公共祖先,返回 root ;
  • 当 left 为空 ,right 不为空 :p,q 都不在 root 的左子树中,直接返回 right 。具体可分为两种情况:
    • p,q 其中一个在 root 的 右子树 中,此时 right 指向 p(假设为 p );
    • p,q 两节点都在 root 的 右子树 中,此时的 right 指向 最近公共祖先节点 ;
  • 当 left 不为空 , right 为空 :与情况 3. 同理;

三、代码

public class Offer_68_II {
    public static TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) {
            return root;
        }
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);
        // root 的左 / 右子树中都不包含 p,q ,返回 null
        if (left == null && right == null) {
            return null;
        }
        // p,q 都不在 root 的左子树中,直接返回 right
        if (left == null) {
            return right;
        }
        // p,q 都不在 root 的右子树中,直接返回 left
        if (right == null) {
            return left;
        }
        // 说明 p,q 分列在 root 的异侧(分别在 左 / 右子树),因此 root 为最近公共祖先
        return root;

    }
}

四、复杂度

  • 时间复杂度:O(N) ,其中 N 为二叉树节点数;最差情况下,需要递归遍历树的所有节点。

  • 空间复杂度:O(N) : 最差情况下,递归深度达到 N ,系统使用 O(N) 大小的额外空间。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页