Problem G Tree Reconstruction (模拟)

该博客介绍了Codeforces上的一道名为'Problem G Tree Reconstruction'的题目。题目要求构造一棵树,对于n-1个询问,删除一条边后,最大连通分量包含编号为u或v的节点。文章讨论了不合法情况的判断,如最大值必须为n,重复(u, v)询问时如何处理,并提供了模拟解决方案,强调在(u, v)之间选择不在询问中的较小节点。整体时间复杂度为O(nlogn)。" 42970441,4929119,Spring MVC 接收并处理JSON对象集合,"['前端开发', '后端开发', 'json处理', 'Spring框架', 'jQuery']

https://codeforces.com/gym/101911/problem/G

题意

有n个结点,编号为1~n,构造一颗树,使得给出n-1个询问(u,v),每个询问满足删除一条边后,两个连通分量里最大的分别为u,v。
输出边的方案。

题解

不合法的情况:

  1. 分成两个连通分量里面一定有一个的最大值是n,那么如果出现v不是n的情况那么就不合法。
  2. 当出现多次相同的(u,v)的时候,那么就需要在u,v之间插入小于u的数,如果没有的话就是不合法的。

模拟这个过程。要注意的是查找比u小的需要选一个不在询问当中的数。

代码

时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include <bits/stdc++.h>
using namespace std;
#define FOR0(a,b) for(int i = a; i < b; ++i)
#define FORE(a,b) for(int i = a; i <= b; ++i)
typedef long long ll;
typedef pair<int,int> pii;

const int maxn = 1005;
struct ask {
	int u,v;
	bool operator <(const ask& rhs) const {
		return v > rhs.v;
	}
}a[maxn];
int n;
vector<int> v[maxn];
set<int> vis;
bool ext[maxn], fir[maxn];
int main() {
	scanf("%d", &n);
	for(int i = 0; i < n-1; ++i) {
		scanf("%d%d", &a[i].u, &a[i].v);
		if(a[i].u > a[i].v)
			swap(a[i].u, a[i].v);
		vis.insert(i+1);
	}
	if(a[0].v != n) {
		puts("NO");
		exit(0);
	}
	for(int i = 0; i < n-1; ++i) {
		if(vis.count(a[i].u))
			vis.erase(a[i].u);
	}
	vis.insert(n);
	sort(a,a+n);
	vis.erase(a[0].v);
	fir[a[0].u] = 1;
	for(int i = 1; i < n-1; ++i) {
		if(a[i].v != a[0].v) {
			puts("NO");
			exit(0);
		}
		if(!fir[a[i].u]) {
			fir[a[i].u] = 1;
		} else {
			set<int>::iterator it = vis.lower_bound(a[i].u);
			it--;
			if((*it) >= a[i].u || it == vis.end()) {
				puts("NO");
				exit(0);
			} else {
				v[a[i].u].push_back(*it);
				ext[*it] = true;
				vis.erase(it);
			}
		}

	
	}
	puts("YES");
	vector<int> ans;
	for(int i = 1; i <= n; ++i) {
		if(!ext[i]) {
			ans.push_back(i);
			for(int j = 0; j < v[i].size(); ++j)
				ans.push_back(v[i][j]);
		}
	}
	for(int i = 0; i < ans.size()-1; ++i) {
		cout << ans[i] <<" " << ans[i+1] << endl;
	}
	return 0;
}
内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值