(十六)GBDT与xgboost

GBDT与xgboost

1. 泰勒公式

  • 定义:泰勒公式是一个用函数在某点的信息描述其附近取值的公式。 局部有效性

  • 基本形式 f(x) = n=0f(n)(x0)n!(xx0)n f ( x )   =   ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n

    • 一阶泰勒展开: f(x)f(x0)+f(x0)(xx0) f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 )
    • 二阶泰勒展开: f(x)f(x0)+f(x0)(xx0)+f′′(x0)(xx0)22 f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ″ ( x 0 ) ( x − x 0 ) 2 2
    • 迭代形式:假设 xt=xt1+Δx x t = x t − 1 + Δ x ,将 f(xt) f ( x t ) xt1 x t − 1 处进行泰勒展开:
      f(xt)=f(xt1+Δx)f(xt1)+f(xt1)Δx+f′′(xt1)Δx22(1)(2) (1) f ( x t ) = f ( x t − 1 + Δ x ) (2) ≈ f ( x t − 1 ) + f ′ ( x t − 1 ) Δ x + f ″ ( x t − 1 ) Δ x 2 2

2. 梯度下降法(Gradient Descend Method)

  在机器学习任务中, 需要最小化损失函数 L(θ) L ( θ ) , 其中 θ θ 是要求解的模型参数。 梯度下降法常用来求解这种无约束最优化问题, 它是一种迭代方法: 选取初值 θ0 θ 0 , 不断迭代, 更新 θ θ 的值, 进行损失函数的极小化。

  • 迭代公式 θ=θt1+Δθ θ = θ t − 1 + Δ θ
  • L(θt) L ( θ t ) θt1 θ t − 1 处进行一阶泰勒展开:

    L(θt)=L(θt1+Δθ)L(θt1)+L(θt1)Δθ(3)(4) (3) L ( θ t ) = L ( θ t − 1 + Δ θ ) (4) ≈ L ( θ t − 1 ) + L ′ ( θ t − 1 ) Δ θ

  • 要使得 L(θt)<L(θt1) L ( θ t ) < L ( θ t − 1 ) ,可使: Δθ=αL(θt1) Δ θ = − α L ′ ( θ t − 1 ) ,则: θt=θt1αL(θt1) θ t = θ t − 1 − α L ′ ( θ t − 1 )
    这里 α α 是步长,可通过 line search 确定,但一般直接赋一个小的数。

3. 牛顿法(Newton’s Method)

  • L(θt) L ( θ t ) θt1 θ t − 1 处进行二阶泰勒展开:

    L(θt)=L(θt1+Δθ)L(θt1)+L(θt1)Δθ+L′′(θt1)Δθ22(5)(6) (5) L ( θ t ) = L ( θ t − 1 + Δ θ ) (6) ≈ L ( θ t − 1 ) + L ′ ( θ t − 1 ) Δ θ + L ″ ( θ t − 1 ) Δ θ 2 2

      为了简化分析过程,假设参数是标量(即 θ θ ​ 只有一维),则可将一阶和二阶导数分别记为 g g h
    L(θt)L(θt1)+gΔθ+hΔθ22 L ( θ t ) ≈ L ( θ t − 1 ) + g Δ θ + h Δ θ 2 2

  • 要使得 L(θt) L ( θ t ) 极小,即让 gΔθ+hΔθ22 g Δ θ + h Δ θ 2 2 极小,可令: (gΔθ+hΔθ22)Δθ=0 ∂ ( g Δ θ + h Δ θ 2 2 ) ∂ Δ θ = 0
    求得 Δθ=gh Δ θ = − g h ,故: θt=θt1+Δθ=θt1gh θ t = θ t − 1 + Δ θ = θ t − 1 − g h
    参数 θ θ 推广到向量形式,迭代公式: θt=θt1H1g θ t = θ t − 1 − H − 1 g
    这里 H H 是海森矩阵

4. 从参数空间到函数空间

  • GBDT 在函数空间中利用梯度下降法进行优化
  • XGBoost 在函数空间中用牛顿法进行优化

注:实际上GBDT泛指所有梯度提升树算法, 包括XGBoost, 它也是GBDT的一种变种, 这里为了区分它们, GBDT特指“Greedy Function Approximation: A Gradient Boosting Machine” 里提出的算法, 它只用了一阶导数信息。

GD_to_GB
NM_to_NB

5. Gradient Boosting Tree 算法原理

  • Friedman于论文” Greedy Function Approximation…”中最早提出GBDT
  • 其模型 F 定义为加法模型:

    F(x;w)=t=0Tαtht(x;wt)=t=0Tft(x;wt) F ( x ; w ) = ∑ t = 0 T α t h t ( x ; w t ) = ∑ t = 0 T f t ( x ; w t )

      其中, x x 为输入样本, h 为分类回归树, w w 是分类回归树的参数,α 是每棵树的权重。

  • 通过最小化损失函数求解最优模型:

    F=argminFi=0NL(yi,F(xi;w)) F ∗ = a r g min F ∑ i = 0 N L ( y i , F ( x i ; w ) )

      NP难问题 -> 通过贪心法, 迭代求局部最优解

GBT_A

6. 详解 XGBoost

6.1 模型函数形式

  给定数据集 D={(Xi,yi)} D = { ( X i , y i ) } ,XGBoost进行 additive training, 学习K棵树, 采用以下函数对样本进行预测:

yi^=ϕ(Xi)=k=1Kfk(Xi)fkF y i ^ = ϕ ( X i ) = ∑ k = 1 K f k ( X i ) f k ∈ F

  这里 F F 是假设空间,f(x) 是回归树(CART):
F={f(X)=wq(x)}(q:RmT,wRT) F = { f ( X ) = w q ( x ) } ( q : R m → T , w ∈ R T )

q(x) q ( x ) 表示将样本 x x 分到了某个叶子节点上, w 是叶子节点的分数(leaf score),所以 wq(x) w q ( x ) 表示回归树对样本的预测值

  • 例子:预测一个人是否喜欢电脑游戏
    xgblikegame

  回归树的预测输出是实数分数, 可以用于回归、 分类、 排序等任务中。 对于回归问题, 可以直接作为目标值, 对于分类问题, 需要映射成概率, 比如采用逻辑函数: σ(x)=11+ez σ ( x ) = 1 1 + e − z

6.2 目标函数

  • 参数空间中的目标函数:
    xgbtargetfun
      误差函数可以是square loss, logloss等, 正则项可以是L1正则,L2正则等。

  Ridge Regression(岭回归) : ni=1(yiθTxi)2+λ||θ||2 ∑ i = 1 n ( y i − θ T x i ) 2 + λ | | θ | | 2
  LASSO: ni=1(yiθTxi)2+λ||θ||1 ∑ i = 1 n ( y i − θ T x i ) 2 + λ | | θ | | 1

6.3 正则项

  • XGBoost的目标函数(函数空间)

    L(ϕ)=il(yi^,yi)+kΩ(fk) L ( ϕ ) = ∑ i l ( y i ^ , y i ) + ∑ k Ω ( f k )

      正则项对每棵回归树的复杂度进行了惩罚

  • 相比原始的GBDT, XGBoost的目标函数多了正则项, 使得学习出来的模型更加不容易过拟合。

  • 有哪些指标可以衡量树的复杂度?
    树的深度, 内部节点个数, 叶子节点个数(T), 叶节点分数(w)…
    XGBoost采用的:
    Ω(f)=γT+12λ||w||2 Ω ( f ) = γ T + 1 2 λ | | w | | 2

      对叶子节点个数进行惩罚, 相当于在训练过程中做了剪枝

6.4 误差函数的二阶泰勒展开

  • t t 次迭代后, 模型的预测等于前 t1 次的模型预测加上第 t t 棵树的预测:

    yi^(t)=yi^(t1)+ft(xi)

  • 此时目标函数可写作:

    L(t)=inl(yi^(t1)+ft(xi),yi)+Ω(ft) L ( t ) = ∑ i n l ( y i ^ ( t − 1 ) + f t ( x i ) , y i ) + Ω ( f t )

      公式中 yi y i , yi^(t1) y i ^ ( t − 1 ) 都已知, 模型要学习的只有第 t t 棵树 ft

  • 将误差函数在 yi^(t1) y i ^ ( t − 1 ) 处进行二阶泰勒展开:

    L(t)i=1n[l(yi,y^(t1))+gift(xi)+12hif2t(xi)]+Ω(ft) L ( t ) ≃ ∑ i = 1 n [ l ( y i , y ^ ( t − 1 ) ) + g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t )

      公式中, gi=y^(t1)l(yi,y^(t1))hi=2y^(t1)l(yi,y^(t1)) g i = ∂ y ^ ( t − 1 ) l ( y i , y ^ ( t − 1 ) ) h i = ∂ y ^ ( t − 1 ) 2 l ( y i , y ^ ( t − 1 ) )

  • 将公式中的常数项去掉, 得到:

    L˜(t)=i=1n[gift(xi)+12hif2t(xi)]+Ω(ft) L ~ ( t ) = ∑ i = 1 n [ g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t )

  • ft f t Ω(ft) Ω ( f t ) 写成树结构的形式, 即把下式代入目标函数中

    f(x)=wq(x)Ω(f)=γT+12λ||w||2 f ( x ) = w q ( x ) Ω ( f ) = γ T + 1 2 λ | | w | | 2

  • 得到:

    L˜(t)=i=1n[gift(xi)+12hif2t(xi)]+Ω(ft)=i=1n[giwq(xi)+12hiw2q(x)]+γT+λ12j=1Tw2j(7)(8) (7) L ~ ( t ) = ∑ i = 1 n [ g i f t ( x i ) + 1 2 h i f t 2 ( x i ) ] + Ω ( f t ) (8) = ∑ i = 1 n [ g i w q ( x i ) + 1 2 h i w q ( x ) 2 ] + γ T + λ 1 2 ∑ j = 1 T w j 2

      上面第一个 是对样本累加,第二个 是对叶节点累加,如何统一起来呢?

  • 定义每个叶节点 j j 上的样本集合为:Ij={i|q(xi)=j}
    则目标函数可以写成按叶节点累加的形式:

    L˜(t)=j=1T(iIjgi)wj+12(iIjhi+λ)w2j+γT=j=1T[Gjwj+12(Hj+λ)w2j]+γT(9)(10) (9) L ~ ( t ) = ∑ j = 1 T [ ( ∑ i ∈ I j g i ) w j + 1 2 ( ∑ i ∈ I j h i + λ ) w j 2 ] + γ T (10) = ∑ j = 1 T [ G j w j + 1 2 ( H j + λ ) w j 2 ] + γ T

  • 如果确定了树的结构(即 q(x) q ( x ) 确定) , 为了使目标函数最小, 可以令其导数为 0, 解得每个叶节点的最优预测分数为:

    wj= GjHj+λ w j ∗ = −   G j H j + λ

      代入目标函数, 得到最小损失为:
    L˜= 12j=1TG2jHj+λ+γT L ~ ∗ = −   1 2 ∑ j = 1 T G j 2 H j + λ + γ T

6.5 回归树的学习策略

  • 当回归树的结构确定时, 我们前面已经推导出其最优的叶节点分数以及对应的最小损失值, 问题是怎么确定树的结构?

暴力枚举所有可能的树结构, 选择损失值最小的 - NP难问题
贪心法, 每次尝试分裂一个叶节点, 计算分裂前后的增益, 选择增益最大的

  • 分裂前后的增益怎么计算?
    ID3算法采用信息增益
    C4.5算法采用信息增益比
    CART采用Gini系数
    XGBoost呢?

6.6 XGBoost 的打分函数

L˜= 12j=1TG2jHj+λ+γT L ~ ∗ = −   1 2 ∑ j = 1 T G j 2 H j + λ + γ T

G2jHj+λ G j 2 H j + λ 衡量了每个叶子节点对总体损失的的贡献, 我们希望损失越小越好, 则其值越大越好。
  因此, 对一个叶子节点进行分裂, 分裂前后的增益定义为:
Gain=G2LHL+λ+G2RHR+λ(GL+GR)2HL+HR+λγ G a i n = G L 2 H L + λ + G R 2 H R + λ − ( G L + G R ) 2 H L + H R + λ − γ

Gain G a i n 的值越大, 分裂后 L L 减小越多。 所以当对一个叶节点分割时, 计算所有候选(feature,value)对应的 gain, 选取 gain 最大的进行分割

6.7 树节点分裂方法(Split Finding)

xgbsuanfa
xgbsuanfa1
xgblizi
xgblizi1
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值