给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
i: | 1 | 2 | 3 | 4 |
0.1 | 0.2 | 0.3 | 0.4 | |
0.1 | ||||
0.1 | 0.2 | |||
0.1 | 0.2 | 0.3 | ||
0.1 | 0.2 | 0.3 | 0.4 | |
0.2 | ||||
0.2 | 0.3 | |||
0.2 | 0.3 | 0.4 | ||
0.3 | ||||
0.3 | 0.4 | |||
0.4 | ||||
sum: | 4 | 6 | 6 | 4 |
表达式: | 1*4 | 2*3 | 3*2 | 4*1 |
n=4 | i*(n) | i*(n-1) | i*(n-2) | i*(n-3) |
总结:数字*i*(n-i+1) |
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
double sum=0,temp;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lf",&temp);
sum+=temp*i*(n-i+1);
}
printf("%.2f",sum);
return 0;
}