HDU 6333 Problem B. Harvest of Apples (2018多校4) 莫队 + 组合数 + 逆元

17 篇文章 0 订阅
7 篇文章 0 订阅

Problem B. Harvest of Apples

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1039    Accepted Submission(s): 390

Problem Description

There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.

Input

The first line of the input contains an integer T (1≤T≤105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1≤m≤n≤105).

Output

For each test case, print an integer representing the number of ways modulo 109+7.

Sample Input

2

5 2

1000 500

Sample Output

16

924129523

Source

2018 Multi-University Training Contest 4


题意:给出多次询问,每次询问 给出 n 和 m,求 C(n,0) + C(n,1) + ... + C(n,m) 

思路:首先要求的这个东西记为 S(n,m),大佬们给出的公式 S(n,m) = S(n,m-1) + C(n,m),S(n,m) = 2*S(n-1,m) - C(n-1,m)

询问是可以离线的,可以用莫队来优化时间

两个指针 n  和 m 分别表示 S(n,m) 里的 n 和 m

那么左指针右移相当于求 S(n+1,m) = 2 * S(n,m) - C(n,m)  可以转化为----> S(n,m) = 2 * S(n - 1,m) - C(n-1,m)

右指针右移:S(n,m+1) = S(n,m) + c(n,m+1)  ------>  S(n,m) = S(n,m-1) + S(n,m)

左指针左移:S(n-1,m) = (S(n,m) + C(n-1,m)) / 2

右指针左移:S(n,m-1) = S(n,m) - C(n,m)

由于这里涉及到了除法和取模,所以要用到逆元,预处理做阶乘表 fac[] 的时候,也要做一个阶乘的逆元表 inv[]

所以 C(n,m) = n! / ((n - m)! * m!) = fac[n] * inv[n - m] % mod * inv[m] % mod

上面左指针左移的地方有 / 2,所以还要弄一个 2 的逆元

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
ll fac[maxn]; //阶乘
ll inv[maxn]; //逆元
ll inv2;   // 除 2 的逆元 
ll ans[maxn]; //答案
ll var;    // 活动变量和 
int pos[maxn]; //分块
 
struct node{
	int l,r,id;
}nod[maxn]; 

bool cmp(node a,node b){
	if(pos[a.l] == pos[b.l]){
		return a.r < b.r;
	}	
	return a.l < b.l;
}

ll Pow(ll a,ll b){
	ll ans = 1;
	while(b){
		if(b & 1){
			ans = ans * a % mod;	
		}
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}

void init(){
	
	// 预处理阶乘 
	fac[0] = fac[1] = 1;
	for(int i = 2;i < maxn;i++){
		fac[i] = i * fac[i - 1] % mod;
	}
	
	//求阶乘的逆元 
	inv[maxn - 1] = Pow(fac[maxn - 1],mod - 2);
	for(int i = maxn - 2;i >= 0;i--){
		inv[i] = inv[i + 1] * (i + 1) % mod;
	}
	
	inv2 = Pow(2,mod - 2);
}

ll Comb(int n,int m){ //求 C(n,m) = n! / ((n - m)! * m!)
	return fac[n] * inv[m] % mod * inv[n - m] % mod; 
} 

void addL(int n,int m){ // s(n,m) = 2 * s(n-1,m) - c(n-1,m)
	var = (2 * var % mod - Comb(n-1,m) + mod) % mod;
}

void addR(int n,int m){ // s(n,m) = s(n,m-1) + c(n,m)
	var = (var + Comb(n,m)) % mod;
}

void delL(int n,int m){ //s(n-1,m) = (s(n,m) + c(n-1,m)) / 2
	var = (var + Comb(n - 1,m)) % mod * inv2 % mod; 
}

void delR(int n,int m){ // s(n,m-1) = s(n,m) - c(n,m)
	var = (var - Comb(n,m) + mod) % mod;
}

int main(){
	int T;
	scanf("%d",&T);
	int b = sqrt(T);
	init();
	for(int i = 1;i <= T;i++){
		scanf("%d %d",&nod[i].l,&nod[i].r);
		pos[i] = i / b;
		nod[i].id = i;
	}
	sort(nod + 1,nod + 1 + T,cmp);
	int l = 1,r = 1;
	var = 2; // c(1,0) + c(1,1) = 2
	for(int i = 1;i <= T;i++){
		while(l < nod[i].l){
			addL(++l,r);
		}
		while(r < nod[i].r){
			addR(l,++r);
		}
		while(l > nod[i].l){
			delL(l--,r);
		}
		while(r > nod[i].r){
			delR(l,r--);
		}
		ans[nod[i].id] = var;
	}
	for(int i = 1;i <= T;i++){
		printf("%lld\n",ans[i]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值