分治法,字面意思是“分而治之”,就是把一个复杂的1问题分成两个或多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并,这个思想是很多高效算法的基础,例如排序算法(快速排序,归并排序),傅里叶变换(快速傅里叶变换)等。
分治法的基本思想:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略:对于一个规模为n的问题,若该问题可以容易的解决(比如规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解决这些子问题,然后将各个子问题的解合并得到原问题的解。
如果原问题可以分割成k个子问题,1<k<=n,且这些子问题均可解并且利用这些子问题的解求出原问题的解,那么分治方法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归经常同时应用在算法设计之中。
分治法使用场景
- 该问题的规模缩小到一定的程度就可以容易的解决。
- 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
- 利用该问题分解出的子问题的解可以合并为该问题的解。
- 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
第一条特征是绝大多数问题可以满足的,问题的复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提。它是大多数问题可以满足的,此特征反映了递归思想的应用。第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条,而不具备第三条特征,则可以考虑使用贪心法或者动态规划法。第四条关系到分治法的效率,如果各个子问题是不独立的则分治法要做寻多不必要的工作,重复的解决公共的子问题,此时虽然可用分治法,但一般使用动态规划法较好。
分治法的基本步骤
- 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
- 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
- 合并:将各个子问题的解合并为原问题的解