引言
多传感器数据融合的基本原理是通过整合来自不同传感器的信息来增强系统的感知能力和决策能力。这些传感器可以是不同类型的传感器,如摄像头、毫米波雷达、激光雷达等。每个传感器都有其独特的特性和限制,而数据融合的目标是最大限度地利用每个传感器的优势并弥补其缺陷。
不同传感器之间的特性包括以下几个方面:
-
类型和成像原理:
不同类型的传感器使用不同的原理来感知环境。例如,摄像头通过拍摄场景的图像来获取信息,激光雷达则通过发射和接收光点来探测目标。了解传感器的类型和原理是进行数据融合的基础。 -
观测范围和分辨率:
每个传感器都有其特定的观测范围和分辨率。例如,摄像头可以提供高分辨率的图像,但其观测范围有限;而雷达可以提供较大的观测范围,但分辨率相对较低。数据融合需要综合考虑不同传感器的观测范围和分辨率,以获得更全面的信息。 -
精确度和准确度:
不同传感器在测量精确度和准确度方面可能存在差异。有些传感器可能对某些参数测量更准确,而其他传感器则在其他方面更可靠。数据融合可以通过综合多个传感器的测量结果来提高整体的精确度和准确度。 -
实时性:
一些传感器可以提供实时的数据,而其他传感器可能具有更长的延迟。在数据融合中,需要考虑传感器数据的实时性,以便在决策中避免延迟。
多传感器数据融合的基本想法是通过整合不同传感器的信息来提高系统的感知和决策能力。
多传感器的融合策略
一般来说,在计算机视觉中较为主流的传感器是相机、激光雷达、毫米波雷达,其中这些传感器做数据融合主要针对两个方面数据的时间同步、空间同步(外参标定);
传感器的时间同步
时间同步本质是将不同传感器时间做时钟源统一,如将中国各地方的时间统一为北京时间,这就是将各个地区的时间同步上了;在传感器层面的时间同步可分为硬同步、软同步;
- 使用专用硬件或软件来确保传感器之间的数据采集时间同步,例如使用GPS信号或者网络时间协议(NTP)来同步传感器的时钟(硬同步)
- 当出现数据频率不统一或者时间存在一定相位差时,可采用软同步方式进行数据融合(软同步),例如ros系统的时间同步机制。
时间硬同步一般来说可通过传感器、控制器等设备进行设置即可,当传感器之间存在不同时间同步方式时,一般需要通过电信号或者模拟信号统一时钟源。
时间软同步则主要是消除数据传输中由系统线程运行是所引起的时间误差。
举一个简单的数据同步示例,其基本步骤是:
- 将接收到的数据解析并成本身需要使用的格式,并添加至数据队列;
- 利用时间阈值判断,从缓存的数据队列中寻找与目标时间戳最为接近的数据;
void AddNetDetectData(
const LidarNetData& lidar_net_objects) {
if (lidar_net_objects.objects.empty()) return;
std::vector<Box3dInfo> boxs;
for (const auto& objcet :
lidar_net_objects.objects) {