题目链接:871. 最低加油次数
题目
汽车从起点出发驶向目的地,该目的地位于出发位置东面 target
英里处。
沿途有加油站,每个 station[i]
代表一个加油站,它位于出发位置东面 station[i][0]
英里处,并且有 station[i][1]
升汽油。
假设汽车油箱的容量是无限的,其中最初有 startFuel
升燃料。它每行驶 1 英里就会用掉 1 升汽油。
当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。
为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。
注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。
1 <= target, startFuel, stations[i][1] <= 10^9
0 <= stations.length <= 500
0 < stations[0][0] < stations[1][0] < ... < stations[stations.length-1][0] < target
解法
此题目可以使用动态规划或者贪心法求解,此处使用贪心法。若要获得最少加油次数,显然应该优先在拥有最多油量的加油站加油。因此算法如下:先计算出当前可以到达的最远的位置👉再从已经经过的加油站中选取油量最多的地方加油👉再前往可以到达的最远位置👉…
如此循环,当到达终点或没有可用的加油站时结束。
代码
Java:
class Solution {
public int minRefuelStops(int target, int startFuel, int[][] stations) {
int[] flag = new int[stations.length];
Arrays.fill(flag, 0);
int position = 0;
int fuel = startFuel;
int times = 0;
while (position < target) {
position = position + fuel;
fuel = 0;
int max = 0;
int maxIndex = -1;
for (int i = 0; i < stations.length; i++) {
if (stations[i][0] <= position && flag[i] == 0 && stations[i][1] > max) {
max = stations[i][1];
maxIndex = i;
} else if (stations[i][0] > position) {
break;
}
}
if (position >= target) {
return times;
} else if (maxIndex == -1) {
return -1;
} else {
fuel = max;
flag[maxIndex] = 1;
times++;
}
}
return times;
}
}