【考研数学高数部分】无穷级数

解法:

  1. 当数列通项具体已知时,通常解法为:
    • (1)夹逼准则
    • (2)定积分定义(夹逼准则失效时,使用定积分定义)
    • (3)利用幂级数求和
    • (4)利用级数收敛的必要条件
  2. 当数列通项由递推关系式 a n = f ( a n − 1 ) a_n=f(a_{n-1}) an=f(an1)给出时,通常使用“单调有界数列必有极限”的准则(单调有界准则)

分子不动,改分母


先证单调性,再证明其有界性,故 lim ⁡ x → ∞ x n \lim\nolimits_{x\to\infty}x_n limxxn

解法:题目一般是 x 1 = 数值, x n + x n − 1 ,求 { x n } x_1=\text{数值,}x_n+x_{n-1}\text{,求}\{x_n\} x1=数值,xn+xn1,求{xn}

先证单调性:先得到 x n ,与 x n + 1 ,再求出 x 1 , x 2 ,设 x k > x k − 1 x_n\text{,与}x_{n+1}\text{,再求出}x_1,x_2\text{,设}x_k> x_{k-1} xn,与xn+1,再求出x1,x2,设xk>xk1则,比较
x k + 1 − x k x_{k+1}-x_k xk+1xk
x k + 1 > x k x_{k+1}> x_{k} xk+1>xk,即数列 { x n } \{{x_n}\} {xn}单调增加或单调减少

再证明其有界性:根据 x n x_n xn x n − 1 x_{n-1} xn1的关系,得出极限数值

lim ⁡ x → ∞ x n \lim\nolimits_{x\to\infty}x_n limxxn存在,设 l i m x → ∞ x n = A ,令 n → ∞ ,由 x n = x n − 1 ,得 A = A ,(即关系式 x n 与 x n − 1 都为A) lim_{x \to \infty}x_n=A\text{,令}n \to \infty\text{,由}x_n=x_{n-1}\text{,得}A=A\text{,(即关系式}x_n\text{与}x_{n-1}\text{都为A)} limxxn=A,令n,由xn=xn1,得A=A(即关系式xnxn1都为A),解得A的值,再由题设, x n > 0 x_n>0 xn>0,根据极限保号性, A ≥ 0 A\ge 0 A0,得出函数极限 l i m n → ∞ x n lim_{n \to \infty}x_n limnxn的值(正负)


对和式 ∑ i = 1 n = u 1 + u 2 + ⋅ ⋅ ⋅ + u n \sum_{i=1}^{n}=u_1+u_2+···+u_n i=1n=u1+u2+⋅⋅⋅+un进行缩放有两种

(1)当n为无穷大时,则 n ∗ u m i n ≤ ∑ i = 1 n u i ≤ n ∗ u m a x n*u_{min}\le \sum_{i=1}^{n}u_i\le n*u_{max} numini=1nuinumax

一般会出现分数形式,注意分母,一般在分母加1的是比较大的,加n的是比较小的

例如: 1 1 + n > 1 n + n \frac{1}{1+n}>\frac{1}{n+n} 1+n1>n+n1

(2)当n为有限数,且 u i ≥ 0 u_i\ge0 ui0时,则 1 ∗ u m a x ≤ ∑ i = 1 n u i ≤ n ∗ u m a x 1*u_{max}\le\sum_{i=1}^{n}u_i \le n*u_{max} 1umaxi=1nuinumax

主要根据谁在和式 ∑ i = 1 n u i \sum_{i=1}^{n}u_i i=1nui中起“决定性作用”而提出两种放缩方法

对于(1),当n为无穷大时, u 1 + u 2 + ⋅ ⋅ ⋅ + u n u_1+u_2+···+u_n u1+u2+⋅⋅⋅+un中的每一个都是无穷小,则谁也不起“决定性作用”

对于(2),当n为有限数,且 u i ≥ 0 u_i\ge0 ui0时, u 1 + u 2 + ⋅ ⋅ ⋅ + u n u_1+u_2+···+u_n u1+u2+⋅⋅⋅+un,并非每个 u i u_i ui都是无穷小,则其最大值 u m a x u_{max} umax往往其“决定性作用”

例如:对于 u 1 + u 2 + u 3 = 1 + x n + ( x 2 2 ) n , x ϵ ( 2 , + ∞ ] u_1+u_2+u_3=1+x^n+(\frac{x^2}{2})^n, x\epsilon(2,+\infty] u1+u2+u3=1+xn+(2x2)n,xϵ(2,+]每个 u i u_i ui都非无穷小,此时三个量中的最大值 ( x 2 2 ) n (\frac{x^2}{2})^n (2x2)n会起到“决定性作用”,则
1 ∗ ( x 2 2 ) n ≤ 1 n + x n + ( x 2 2 ) n ≤ 3 ∗ ( x 2 2 ) n 1*(\frac{x^2}{2})^n \le 1^n+x^n+(\frac{x^2}{2})^n \le 3*(\frac{x^2}{2})^n 1(2x2)n1n+xn+(2x2)n3(2x2)n

1. S n = a + a q + a q 2 + ⋯ + a q n − 1 = a ( 1 − q n ) 1 − q ( q ≠ 1 ) 2. ∣ q ∣ < 1 , lim ⁡ n → ∞ a ( 1 − q n ) 1 − q = a 1 − q 必考 1. S_n=a+aq+aq^2+\dots+aq^{n-1}=\frac{a(1-q^n)}{1-q}(q\ne 1)\\ 2. |q|<1, \lim_{n \to \infty}\frac{a(1-q^n)}{1-q}=\frac{a}{1-q}\text{必考} 1.Sn=a+aq+aq2++aqn1=1qa(1qn)(q=1)2.∣q<1,nlim1qa(1qn)=1qa必考

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值