贪心算法理论基础:贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
贪心算法的基本思路:分解问题为若干子问题---->找出贪心策略---->求解每个子问题的最优解---->将局部最优堆叠为全局最优。
第一题、分发饼干 力扣题目链接
思路:大饼干满足大胃口的小孩,达到最优分配
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int result = 0;
int index = s.size() - 1; // 饼干
for(int i = g.size()-1; i >= 0; i--){
if(index >= 0 && s[index] >= g[i]){
result++;
index--; // 满足条件后, 取下一个饼干的值
}
}
return result;
}
};
第二题、摆动序列 力扣题目链接
思路:
1、虚拟头部一个平坡,即前面多一个与第一个元素相等的元素,体现在代码上就是preDiff=0,没有摆动时不更新;如果有平坡就要跳过中间平坡的情况,那么就是在if条件判断的时候有 preDiff <=0 和 preDiff >=0 的等于号的情况。
2、默认最右边有一个摆动,即result初始值为1。
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if(nums.size() <= 1) return nums.size();
int curDiff = 0;
int preDiff = 0;
int result = 1; //默认最右边的一个是摆动
for(int i=0; i < nums.size() - 1; i++){
curDiff = nums[i+1] - nums[i];
if(preDiff <= 0 && curDiff > 0 || preDiff >= 0 && curDiff < 0){
result++;
preDiff = curDiff; // 只在有摆动后更新preDiff
}
}
return result;
}
};
第三题、最大子数组和 力扣题目链接
思路:用result存最大和。 count记录最大子序列和,当count为负数就抛弃前面的数,赋值为0,从新开始记录。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for(int i = 0; i < nums.size(); i++){
count += nums[i];
if(count > result){
result = count;
}
if(count < 0 ){
count = 0;
}
}
return result;
}
};