算法训练 结点选择 树形DP

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。



树形DP来解决

DP[i][j]  节点i   j=0为选取,j=1为不选

DP[i][0] +=  max(DP[q][0],DP[q][1])

DP[i][1] += DP[q][0];

我们倒着来,从子节点开始,最后输出max(dp[1][0],dp[1][1])

建个树开始DFS即可


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<queue>
using namespace std;
struct node
{
    int v;
    int next;
}edge[200020];
int head[100010];
int dp[100010][2];
int M;
void addEdge(int from,int to)
{
    edge[M].v=to;
    edge[M].next=head[from];
    head[from]=M++;
     edge[M].v=from;
    edge[M].next=head[to];
    head[to]=M++;
    return ;
}
void dfs(int x,int pre)
{


    for(int i=head[x];i!=-1;i=edge[i].next)
    {
        int v=edge[i].v;
        if(pre==v)
        {
            continue;
        }
        dfs(v,x);
        dp[x][1]+=dp[v][0];
        dp[x][0]+=max(dp[v][0],dp[v][1]);
    }
}
int main()
{
    int n;
    cin>>n;
    memset(head,-1,sizeof(head));
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++)
    {
        cin>>dp[i][1];
    }
    for(int i=1;i<n;i++)
    {
        int a,b;
        cin>>a>>b;
        addEdge(a,b);
    }
    dfs(1,-1);
    cout<<max(dp[1][1],dp[1][0])<<endl;


}
/*
string str;
string str2;
int str3[1100];
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        cin>>str;
        int len=str.length();
        for(int i=len-1;i>=0;i--)
        {
            if(str[i]=='0')
            {
                str2+="0000";
                break;
            }
             if(str[i]=='1')
            {
                str2+="0001";
                break;
            }
             if(str[i]=='2')
            {
                str2+="0010";
                break;
            }
             if(str[i]=='3')
            {
                str2+="0011";
                break;
            }
             if(str[i]=='4')
            {
                str2+="0100";
                break;
            }
             if(str[i]=='5')
            {
                str2+="0101";
                break;
            }
             if(str[i]=='6')
            {
                str2+="0110";
                break;
            }
             if(str[i]=='7')
            {
                str2+="0111";
                break;
            }
             if(str[i]=='8')
            {
                str2+="1000";
                break;
            }
             if(str[i]=='9')
            {
                str2+="1001";
                break;
            }
             if(str[i]=='A')
            {
                str2+="1010";
                break;
            }
             if(str[i]=='B')
            {
                str2+="1011";
                break;
            }
             if(str[i]=='C')
            {
                str2+="1100";
                break;
            }
             if(str[i]=='D')
            {
                str2+="1101";
                break;
            }
             if(str[i]=='E')
            {
                str2+="1110";
                break;
            }
             if(str[i]=='F')
            {
                str2+="1111";
                break;
            }
        }
        int shuchu=0;
        int sum;
        int t;
         len=str2.length();
        for(int i=0;i<len;i+=3)
        {
            sum=0;
            t=2;
            for(int j=i;j<i+3;j++)
            {
               int q=str2[j]-'0';
               sum=sum+q*pow(2,t);
               t--;
            }
            str3[shuchu++]=sum;
        }
        int i;
        for( i=shuchu-1;i>=0;i--)
        {
            if(str3[i]!=0)
                break;
        }
        for(int j=i;j>=0;j--)
        {
            cout<<str3[j];
        }
        cout<<endl;
    }


}*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值