使用易康(eCognition Developer 8.9)对遥感影像进行面向对象分类

使用易康(eCognition Developer 8.9)对遥感影像进行面向对象分类

1、导入加载影像数据(注意文件不能出现中文)
2、影像分割
1)在【Process Tree】对话框里写分割进程,首先右键插入【Append New】,名字修改为【分割】,然后按“ok”,再右键插入想【Process Tree】,选择多尺度分割算法【multiresolution segmentation】,并把右边分割尺度的参数【Scale parameter】的参数设为40(分辨率高的分割尺度越大,分辨率低的分割尺度越小),形状因子的参数(shape)设为0.2,紧凑度的参数(compactness)设为0.5(如图),然后点击【Execute】执行操作。

在这里插入图片描述

2)分割后可以检查分割的是否合理,看原本是一个整体的地方被分成几块又或者不同的地类是否有分割开来,若没分割好需要重新分割。

在这里插入图片描述

3、创建类别
在【Class Hierarchy】对话框中右键选择【Insert Class】,创建不同颜色的类别。(如图)

在这里插入图片描述

4、配置最邻近特征
1)在【Process Tree】 对话框右键插入【Append New】,名字修改为【配置最邻近特征】,然后按【ok】,再右键插入【Insert child】,选择【最邻近特征算法】(nearest neighbor configuration),在右边表格的【Active classes】里勾选要配置的类别(如图);

在这里插入图片描述

2)在【Features】中点击,把【Object features】下的【Layer Values】双击【Mean】和【Standard deviation】,再选择【Customized】下的【Create new ’Arithmetic Feature’,输入NDVI(植被分类指数)的算法公式(在网上查找快鸟4个波段所代表对应的颜色,再输入对应的公式);

NDVI 计算公式如下:
NDVI=(NIR-R)/(NIR+R)
(NIR 为近红外波段,R 为红光波段)
同理再输入NDWI(水体分类指数)的算法公式,然后执行。
NDWI 计算公式如下:
NDWI = (Green - NIR)/(Green+NIR)

在这里插入图片描述 图1 计算NDVI

在这里插入图片描述图2 计算NDWI

5、手动选样本
1)在工具栏的空白处右键,在【Toolbars】下选择【Sample】,就会弹出工具条,点击样本编辑器(Sample editor);

在这里插入图片描述
2)然后在【Active class】的下拉框选择要选的样本类别;

在这里插入图片描述
3)然后回到影像对象视窗,点击样本选择工具(select sample),选择时要把比较有代表性的样本都选择出来,尽量不要选同质性的(如形状、颜色)。在各种类别选择比较有代表性的、比较确定的样本就可以了,不用全选。

在这里插入图片描述

6、分类
1)在进程树(Process tree)右键选择【Append New】,在Name框中改为【分类’,点击】OK】,在【分类】右键点击【Insert child】,在【Edit Process】对话框中的【Algorithm】选择【classification】,选择后在右边的【Active classes】中勾选要分类的样本,其余的保持默认,然后点击执行(Execute)。

在这里插入图片描述

7、手动修改类别
1)在工具栏空白处右键选择【Toolbars】的【Manual Editing】,会出现如图所示的工具栏;

在这里插入图片描述
2)选择【分类图像对象】(classify image objects) ,选中后会出现反向的鼠标箭头,然后点击要修改的类别区域,选中后在工具栏的第二个窗口(Select Class for Manual Classification)的下拉菜单中选择所选中区域要修改的类别,点击后选中的区域就会修改。
还可以选择(Filter Classes for Multiple image Object Selection) 的筛选功能进行多选并修改,这一功能比较方便,适合同一类别较多错误的修改。

在这里插入图片描述

8、输出结果
1) 在菜单栏上选择Export—Export result—Format(格式)选择Shapefile(shp)—在Class窗体里的Select Class—All(如图);

在这里插入图片描述
2)在Feature里的【Class-Related features】—【relations to Classification】选择【class name】;
在这里插入图片描述

### 回答1: 易康是一种面向对象的编程语言,它提供了一种简单而强大的方式来实现K最近邻(KNN)算法的监督分类。 K最近邻是一种基本的机器学习算法,它通过比较待分类样本与已知类别样本之间的距离来进行分类。在KNN算法,K代表了选择的最近邻样本的数量,这些样本的类别将决定待分类样本的类别。 通过易康编程语言,我们可以很容易地实现KNN算法。首先,我们需要定义一个样本类,该类包含了样本的特征和对应的类别。然后,我们可以根据已有的样本数据集,根据指定的K值,计算待分类样本与每个样本之间的距离,并选择K个最近邻样本。最后,根据K个最近邻样本的类别,通过投票或加权投票的方式确定待分类样本的类别。 易康为我们提供了丰富的面向对象编程特性,例如类的定义和对象的创建,这使得我们能够更加方便地组织和处理数据。此外,易康还提供了丰富的数学函数和算法库,使得我们能够轻松地计算距离、进行排序和统计。 通过易康编写KNN算法的教程,我们可以学习如何使用易康语言进行面向对象的编程,以及如何利用K最近邻算法进行监督分类。这将帮助我们理解KNN算法的原理和实现细节,并为我们提供一个实际操作的示例。同时,这也会增强我们的编程能力和机器学习算法的理解。 ### 回答2: 易康面向对象KNN监督分类教程是一篇关于使用易康软件进行KNN(K-最近邻)监督分类的指导教程。 KNN算法是一种常用的监督学习算法,用于分类和回归任务。它通过计算待分类样本与训练集各个样本之间的距离,选取其距离最近的K个样本,根据这K个样本的类别进行投票决定待分类样本的类别。 易康软件是一种简单易用的数据挖掘和机器学习工具,提供了丰富的功能和工具来支持各种机器学习算法的实现与应用。 在这篇教程,首先介绍了KNN算法的原理和步骤。然后,详细描述了如何使用易康软件加载数据集和预处理数据。之后,通过设置K值和距离度量方法等参数,演示了如何进行KNN算法的模型训练和分类预测。最后,给出了评估分类器性能和优化模型的方法。 教程还提供了实例数据集和代码示例,以帮助读者更好地理解和掌握KNN算法和易康软件的使用。读者可以按照教程的步骤进行实际操作,并根据自己的需求进行调整和优化。 总之,易康面向对象KNN监督分类教程提供了一种简单明了的学习路径,帮助读者了解和应用KNN算法,并通过易康软件进行实际的监督分类任务。这个教程是学习机器学习和数据挖掘领域的初学者和从业者的有价值的参考资料。 ### 回答3: 易康是一家提供医疗数据分析解决方案的公司,他们开发了一个面向对象的KNN监督分类教程。 KNN(k-nearest neighbors)是一种常用的机器学习算法,用于分类和回归问题。该算法将新的实例分配给距离其最近的k个邻居最常见的类别,从而实现分类任务。面向对象编程是一种编程范式,它将数据和行为组织在对象,并通过对象之间的交互来完成任务。 易康的KNN监督分类教程通过面向对象的方式,提供了一个详细的指南,帮助用户了解和应用KNN算法进行分类任务。教程的目的是帮助用户理解KNN算法的原理和实现步骤,并通过实际案例应用来加深理解。 教程主要包括以下内容: 1. KNN算法的介绍:教程首先介绍了KNN算法的概念、原理和工作流程。用户可以了解KNN算法的基本思想和如何选择合适的k值。 2. 数据准备和预处理:教程提供了一些数据准备和预处理的技巧,帮助用户清洗和准备数据集,以便进行KNN分类。 3. KNN分类器的实现:教程使用Python编程语言演示了KNN分类器的实现过程。用户可以学习如何编写代码来计算距离、选择最近的邻居并进行分类。 4. 参数调优和模型评估:教程介绍了如何调整KNN算法的参数,并使用交叉验证等技术来评估模型的性能。 5. 实际案例应用:教程提供了一些实际案例,如基于KNN的手写数字识别和鸢尾花分类等,让用户通过实践来加深对KNN算法的理解和应用。 通过易康面向对象的KNN监督分类教程,用户可以系统地学习和掌握KNN算法,并能够在实际应用解决分类问题。该教程对于有一定机器学习基础的人员来说是一个很好的学习资源。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Little_giser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值