codeforces XOR and Favorite Number (莫队分块)

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.

Input
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob’s favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob’s array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output
Print m lines, answer the queries in the order they appear in the input.

Example
Input
6 2 3
1 2 1 1 0 3
1 6
3 5
Output
7
0
Input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
Output
9
4
4
Note
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.

关于这题和莫队分块 附送大神的视频解说http://www.bilibili.com/video/av4291097/?from=search&seid=17971574127867910922
题意 给出n m k 问n个数的区间,给出m个询问,问有区间内有多少个连续的子区间异或和为k

分析:离线处理区间,多个询问,所以用莫队算法。
莫对算法的原理我也不太懂,基本做法
分块 sz=sqrt(n)
首先用pos数组把读入的数除以sz划分区间。这个pos数组主要用于给询问的区间排序。首先按照左边界的分块排序 就是 pos[a.l]

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1<<20;
const int inf=0x3f3f3f3f;
ll pos[maxn];
ll flag[maxn],ans[maxn];
int a[maxn];
struct node
{
    int l,r,id;
}Q[maxn];
bool cmp(node a,node b)
{
    if(pos[a.l]==pos[b.l])
    {
        return a.r<b.r;
    }
    return pos[a.l]<pos[b.l];
}
ll Ans=0;
void add(int x)
{
    ans+=flag[a[x]^k]; //先加上这个位置的a[i],由于a[i]^(a[i]^k)=k;
    //所以要先加,因为可能会有 a[i]^a[i]=k; 但是在题目中是不允许这样的。所以先算再加。
    flag[a[x]]++;//因为是先算再加加,所以没有算进去,减的时候要先自减再减,避免发生减去自身的情况。
}
void del(int x)
{
    flag[a[x]]--;//因为是先算再加加,所以没有算进去,减的时候要先自减再减,避免发生减去自身的情况。
    ans-=flag[a[x]^k];//a[x]对于k的贡献取决于flag[a[x]^k];
}
int n,m,k;
int L =1, R=0;
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    int sz=sqrt(n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        a[i]^=a[i-1];
        pos[i]=i/sz;
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&Q[i].l,&Q[i].r);
        Q[i].id=i;
    }
    flag[0]=1;
    sort(Q+1,Q+m+1,cmp);
    for(int i=1;i<=m;i++)
    {
        //真是区间范围 L-1到R,L只是只是方便比较
        while(L<Q[i].l) //我们知道的L是num里的L-1下标,所以L从1开始
        {
            del(L-1); //L-1就是L的左区间,就是我们已经知道的,先删掉再加加
            L++;
        }
        while(L>Q[i].l)
        {
            L--;     //因为L-1 我们已经知道,所以先--再加上前一位
            add(L-1);
        }
        while(R<Q[i].r)
        {
            R++;
            add(R);
        }
        while(R>Q[i].r)
        {
            del(R);
            R--;
        }
        ans[Q[i].id]=Ans;
    }
    for(int i=1;i<=m;i++)
        printf("%I64d\n",ans[i] );
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值