codeforces MUH and Cube Walls (kmp)

本文介绍了一个有趣的KMP算法应用场景——通过对比两组塔的高度序列来找出匹配的段落数量。文章详细解释了如何将原始高度转化为差值序列,并利用KMP算法高效地完成匹配过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Polar bears Menshykov and Uslada from the zoo of St. Petersburg and elephant Horace from the zoo of Kiev got hold of lots of wooden cubes somewhere. They started making cube towers by placing the cubes one on top of the other. They defined multiple towers standing in a line as a wall. A wall can consist of towers of different heights.

Horace was the first to finish making his wall. He called his wall an elephant. The wall consists of w towers. The bears also finished making their wall but they didn’t give it a name. Their wall consists of n towers. Horace looked at the bears’ tower and wondered: in how many parts of the wall can he “see an elephant”? He can “see an elephant” on a segment of w contiguous towers if the heights of the towers on the segment match as a sequence the heights of the towers in Horace’s wall. In order to see as many elephants as possible, Horace can raise and lower his wall. He even can lower the wall below the ground level (see the pictures to the samples for clarification).

Your task is to count the number of segments where Horace can “see an elephant”.

Input
The first line contains two integers n and w (1 ≤ n, w ≤ 2·105) — the number of towers in the bears’ and the elephant’s walls correspondingly. The second line contains n integers ai (1 ≤ ai ≤ 109) — the heights of the towers in the bears’ wall. The third line contains w integers bi (1 ≤ bi ≤ 109) — the heights of the towers in the elephant’s wall.

Output
Print the number of segments in the bears’ wall where Horace can “see an elephant”.

Example
Input
13 5
2 4 5 5 4 3 2 2 2 3 3 2 1
3 4 4 3 2
Output
2

题意,求两个差值序列。问有多少个匹配的。kmp思想

kmp的next就是保存最长的相同的前缀,每次不匹配的时候会跳到模板串相同的前缀的位置看看能不能匹配这个字母,如果可以那么就从这个位置开始重新开始匹配,这样的时间复杂度是o(m+n)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define f(i,a,b) for(int i = a; i < b; i++)
typedef pair<int,int> P;
#define ll long long
int nxt[200010],a[200010],b[200010];

int n, w;
void getfill(int s[])
{
	int j = 0;
	ff(i,2,w) 
	{
		while(j && s[i] != s[j + 1]) j = nxt[j];
		if(s[i] == s[j + 1]) j++;
		nxt[i] = j;
	}
}

int kmp(int s1[],int s2[])
{
	int j = 0,ans = 0;
	getfill(s2);
	ff(i,1,n)
	{
		while(j && s1[i] != s2[j + 1]) j = nxt[j];
		if(s1[i] == s2[j + 1]) j++;
		if(j == w) {ans++; j = nxt[j];}
	}
	return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    cin >> n >> w;
    ff(i,1,n) cin >> a[i];
    ff(i,1,w) cin >> b[i];
    ff(i,1,n - 1) a[i] = a[i + 1] - a[i];
    ff(i,1,w - 1) b[i] = b[i + 1] - b[i];
    if(w == 1) 
    {
    	printf("%d\n", n);
    	return 0;
    }
    n--;w--;
    cout << kmp(a,b) << endl;
	return 0;
}
### 关于 Codeforces 平台上的 KMP 算法练习题目 对于希望在 Codeforces 上找到有关 KMP (Knuth-Morris-Pratt) 字符串匹配算法的练习题目的选手来说,可以关注几个特定标签下的问题。通常这些题目会被标记为 "strings" 或者更具体地标记为 "string suffix structures"[^1]。 为了帮助更好地理解如何查找适合的练习题目,在此提供一段 Python 代码用于模拟访问 API 获取带有指定标签的问题列表: ```python import requests def fetch_problems(tag, platform="codeforces"): url = f"https://{platform}.com/api/problemset.problems?tags={tag}" response = requests.get(url) if response.status_code != 200: raise Exception(f"Failed to retrieve data from {platform}") json_data = response.json() problem_list = [] for index, item in enumerate(json_data['result']['problems']): name = item["name"] rating = item.get('rating', 'N/A') contest_id = item["contestId"] index = item["index"] problem_info = { "Name": name, "Rating": rating, "Link": f"{platform}.com/contest/{contest_id}/problem/{index}" } problem_list.append(problem_info) return problem_list[:5] # Example usage with the tag related to string processing or specifically KMP pattern matching. kmp_related_tag = "strings" fetched_problems = fetch_problems(kmp_related_tag) for prob in fetched_problems: print(prob) ``` 这段脚本会调用 Codeforces 的公开 API 来获取前五个与字符串处理相关的编程挑战链接,并打印出来供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值