Polar bears Menshykov and Uslada from the zoo of St. Petersburg and elephant Horace from the zoo of Kiev got hold of lots of wooden cubes somewhere. They started making cube towers by placing the cubes one on top of the other. They defined multiple towers standing in a line as a wall. A wall can consist of towers of different heights.
Horace was the first to finish making his wall. He called his wall an elephant. The wall consists of w towers. The bears also finished making their wall but they didn’t give it a name. Their wall consists of n towers. Horace looked at the bears’ tower and wondered: in how many parts of the wall can he “see an elephant”? He can “see an elephant” on a segment of w contiguous towers if the heights of the towers on the segment match as a sequence the heights of the towers in Horace’s wall. In order to see as many elephants as possible, Horace can raise and lower his wall. He even can lower the wall below the ground level (see the pictures to the samples for clarification).
Your task is to count the number of segments where Horace can “see an elephant”.
Input
The first line contains two integers n and w (1 ≤ n, w ≤ 2·105) — the number of towers in the bears’ and the elephant’s walls correspondingly. The second line contains n integers ai (1 ≤ ai ≤ 109) — the heights of the towers in the bears’ wall. The third line contains w integers bi (1 ≤ bi ≤ 109) — the heights of the towers in the elephant’s wall.
Output
Print the number of segments in the bears’ wall where Horace can “see an elephant”.
Example
Input
13 5
2 4 5 5 4 3 2 2 2 3 3 2 1
3 4 4 3 2
Output
2
题意,求两个差值序列。问有多少个匹配的。kmp思想
kmp的next就是保存最长的相同的前缀,每次不匹配的时候会跳到模板串相同的前缀的位置看看能不能匹配这个字母,如果可以那么就从这个位置开始重新开始匹配,这样的时间复杂度是o(m+n)。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define f(i,a,b) for(int i = a; i < b; i++)
typedef pair<int,int> P;
#define ll long long
int nxt[200010],a[200010],b[200010];
int n, w;
void getfill(int s[])
{
int j = 0;
ff(i,2,w)
{
while(j && s[i] != s[j + 1]) j = nxt[j];
if(s[i] == s[j + 1]) j++;
nxt[i] = j;
}
}
int kmp(int s1[],int s2[])
{
int j = 0,ans = 0;
getfill(s2);
ff(i,1,n)
{
while(j && s1[i] != s2[j + 1]) j = nxt[j];
if(s1[i] == s2[j + 1]) j++;
if(j == w) {ans++; j = nxt[j];}
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin >> n >> w;
ff(i,1,n) cin >> a[i];
ff(i,1,w) cin >> b[i];
ff(i,1,n - 1) a[i] = a[i + 1] - a[i];
ff(i,1,w - 1) b[i] = b[i + 1] - b[i];
if(w == 1)
{
printf("%d\n", n);
return 0;
}
n--;w--;
cout << kmp(a,b) << endl;
return 0;
}