解密分类模型的核心:Sigmoid与SoftMax的应用与奥秘

其实目标检测也用到了,毕竟检测包括定位与分类嘛。

一、Sigmoid

Sigmoid针对多标签分类问题 = 答案可共存(如生病和住院)
S i g m o i d ( x ) = 1 1 + e − x Sigmoid(x)=\frac{1}{1+e^{-x}} Sigmoid(x)=1+ex1

输入得分值,输出概率值

二、SoftMax

针对多类别分类问题 = 答案唯一(如图像分类猫狗)

它会将每个类别的得分换算成概率。
S o f t M a x ( x ) = e x i ∑ j = 1 n e x j SoftMax(x)=\frac{e^{x_i}}{\sum_{j=1}^ne^{x_j}} SoftMax(x)=j=1nexjexi

输入得分值,输出概率值
  • 分子是类别 i i i 的得分;
  • 分母是所有类别的得分和;
  • softmax的输入是得分,输出是概率,且所有类别的概率和为1;

且所有类别概率之和为1:
e x 1 + . . . + e x n ∑ j = 1 n e x j = 1 \frac{e^{x_1}+...+e^{x_n}}{\sum_{j=1}^ne^{x_j}}=1 j=1nexjex1+...+exn=1


三、分类任务中为啥要使用SoftMax

原因一:分类任务中,神经网络最终要选择概率最高的类别作为自己的分类结果。需要一个方法将得分换算成概率。

原因二:分类任务中,容易出现得分相近的情况,如果相近的得分换算出相近的概率,这就不利于反向传播与模型的迭代。而指数 e x e^x ex 能让得分大的类别换算的概率更大,让得分小的类别换算的概率更小。

  • 举个栗子:一张图片猫2分狗1.9分, e 1.9 = 6.7 , e 2 = 7.4 e^{1.9}=6.7,e^2=7.4 e1.9=6.7e2=7.4

指数曲线如下图所示:

请添加图片描述
注:本图片来自图片来源


四、帮助记忆

SoftMax是软Max,那么有HardMax吗?就算平时用的 M a x ( 3 , 4 ) = 4 Max(3,4)=4 Max(3,4)=4


到底咯,如果这篇文章对您有些许帮助,请帮忙点个赞👍或收个藏📃。您的支持是我继续创作的动力💪!


不要害怕,不要着急。保持每日的前进☀️与积极的内心❤️,命运总在曲折中馈赠最好的礼物。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北上ing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值