其实目标检测也用到了,毕竟检测包括定位与分类嘛。
一、Sigmoid
Sigmoid针对多标签分类问题 = 答案可共存(如生病和住院)
S
i
g
m
o
i
d
(
x
)
=
1
1
+
e
−
x
Sigmoid(x)=\frac{1}{1+e^{-x}}
Sigmoid(x)=1+e−x1
二、SoftMax
针对多类别分类问题 = 答案唯一(如图像分类猫狗)
它会将每个类别的得分换算成概率。
S
o
f
t
M
a
x
(
x
)
=
e
x
i
∑
j
=
1
n
e
x
j
SoftMax(x)=\frac{e^{x_i}}{\sum_{j=1}^ne^{x_j}}
SoftMax(x)=∑j=1nexjexi
- 分子是类别 i i i 的得分;
- 分母是所有类别的得分和;
- softmax的输入是得分,输出是概率,且所有类别的概率和为1;
且所有类别概率之和为1:
e
x
1
+
.
.
.
+
e
x
n
∑
j
=
1
n
e
x
j
=
1
\frac{e^{x_1}+...+e^{x_n}}{\sum_{j=1}^ne^{x_j}}=1
∑j=1nexjex1+...+exn=1
三、分类任务中为啥要使用SoftMax
原因一:分类任务中,神经网络最终要选择概率最高的类别作为自己的分类结果。需要一个方法将得分换算成概率。
原因二:分类任务中,容易出现得分相近的情况,如果相近的得分换算出相近的概率,这就不利于反向传播与模型的迭代。而指数 e x e^x ex 能让得分大的类别换算的概率更大,让得分小的类别换算的概率更小。
- 举个栗子:一张图片猫2分狗1.9分, e 1.9 = 6.7 , e 2 = 7.4 e^{1.9}=6.7,e^2=7.4 e1.9=6.7,e2=7.4。
指数曲线如下图所示:
注:本图片来自图片来源
四、帮助记忆
SoftMax是软Max,那么有HardMax吗?就算平时用的 M a x ( 3 , 4 ) = 4 Max(3,4)=4 Max(3,4)=4
到底咯,如果这篇文章对您有些许帮助,请帮忙点个赞👍或收个藏📃。您的支持是我继续创作的动力💪!
不要害怕,不要着急。保持每日的前进☀️与积极的内心❤️,命运总在曲折中馈赠最好的礼物。