《A High-Quality Denoising Dataset for Smartphone Cameras》阅读笔记

本文介绍了《A High-Quality Denoising Dataset for Smartphone Cameras》的研究,该研究创建了一个包含约30,000个真实噪声图像的数据集SIDD,用于评估智能手机相机降噪技术。通过缺陷像素校正、强度对准和密集局部空间对齐等方法,生成了高质量的地面真实图像。研究表明,基于CNN的方法在使用SIDD训练时表现优于传统方法。" 41800289,377430,CentOS6.5 Shell修改MySQL初始密码及授权远程登录,"['Linux系统管理', '数据库管理', 'MySQL', 'Shell脚本']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文

《A High-Quality Denoising Dataset for Smartphone Cameras》

在过去的十年中,天文学发生了巨大的变化,从使用单反相机和傻瓜相机拍摄的图像转变为使用智能手机相机拍摄的图像。 由于小光圈和传感器尺寸,智能手机图像比DSLR图像具有更大的噪声。 尽管对智能手机图像进行去噪是一个活跃的研究领域,但研究界目前尚缺乏一种能代表来自具有高质量地面真相的智能手机相机中真实噪点图像的去噪图像数据集。 我们在本文中通过以下贡献解决了这个问题。 我们提出了一种系统的程序,用于估计嘈杂图像的地面真实性,可用于对智能手机相机的降噪性能进行基准测试。 使用此过程,我们使用五个有代表性的智能手机摄像头,在不同光照条件下从10个场景中捕获了约30,000个噪点图像的数据集–智能手机图像降噪数据集(SIDD),并生成了地面真实图像。 我们使用此数据集对许多降噪算法进行基准测试。 我们证明,在高质量数据集上进行训练时,基于CNN的方法比在使用其他策略(例如用作地面真实数据代理的低ISO图像)进行训练时效果更好。

贡献这项工作为智能手机降噪研究建立了急需的图像数据集。 为此,我们提出了一种系统的过程,用于估计真实噪声图像的地面真实性,可用于对智能手机图像上的降噪性能进行基准测试。 使用此过程,我们使用五个有代表性的智能手机相机捕获了约30,000个真实噪声图像的数据集,并生成了其地面真实图像。 使用我们的数据集,我们对许多降噪方法进行了基准测试,以衡量各种方法的相对性能,包括基于补丁的方法和最新的基于CNN的技术。 从这一分析中,我们表明,对于基于CNN的方法,与传统的替代方法(例如低ISO图像)相比,使用地面真实数据可以显着提高收益。

二、方法

4.1 缺陷像素校正

缺陷像素可能会影响地面真实性估计的准确性,因为它们不遵守在正常像素位置产生噪声的相同基础随机过程。 我们考虑两种缺陷像素:(1)产生比预期高的信号读数的热像素;  (2)产生完全饱和信号读数的残留像素。 我们通过应用中值滤波器消除此类噪声来避免更改图像内容,而应采用以下步骤。

首先,为了检测每个相机传感器上的缺陷像素的位置,我们在无光照的环境中捕获了500张图像。 我们记录表示为xa的均值图像,然后在均值图像xa中的像素分布上估计均值为µdark和标准偏差为σdark的高斯分布。 理想情况下,µdark将是传感器的暗电平,而σdark将是暗电流噪声的电平。 因此,我们将强度值在N(μdark,σdark)的99.9%置信区间之外的所有像素视为缺陷像素。

我们使用累积分布函数(CDF)的加权最小二乘(WLS)拟合来估计像素的基本高斯分布。 我们使用WLS来避免离群值(即缺陷像素)的影响,离群值可能占相机传感器总像素的2%。 而且,与缺陷像素相比,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值