《ACM算法详解》— 动态规划知识点(二)

 

§ 1 多阶段决策问题    

1.1 多阶段决策问题

     在研究社会经济、经营管理和工程技术领域内的有关问题中,有一类特殊形式的动态决策问题—多阶段决策问题。在多阶段决策过程中,系统的动态过程可以按照时间进程分为相互联系而又相互区别的各个阶段,在每个阶段都要进行决策。系统在每个阶段存在许多不同的状态,在某个时点的状态往往要依某种形式受到过去某些决策的影响,而系统的当前状态和决策又会影响系统过程今后的发展。因而在寻求多阶段决策问题的最优解时,重要的是不能仅仅从眼前的局部利益出发进行决策,而需要从系统所经过的整个期间的总效应出发,有预见性地进行动态决策,找到不同时点的最优决策及整个过程的最优策略。

下面举例说明什么是多阶段决策问题。
 
例1(最短路线问题)在线路网络图5—1中,从A至E有一批货物需要调运。图上所标数字为各节点之间的运输距离,为使总运费最少,必须找出一条由A至E总里程最短的路线。  
 

图5—1                   

    为了找到由A至E的最短线路,可以将该问题分成A—B—C—D—E 4个阶段,在每个阶段都需要作出决策,即在A点需决策下一步到B1还是到B2或B3;同样,若到达第二阶段某个状态,比如B1 ,需决定走向C1还是C2 ;依次类推,可以看出:各个阶段的决策不同,由A至E的路线就不同,当从某个阶段的某个状态出发作出一个决策,则这个决策不仅影响到下一个阶段的距离,而且直接影响后面各阶段的行进线路。所以这类问题要求在各个阶段选择一个恰当的决策,使这些决策序列所决定的一条路线对应的总路程最短。
例2(带回收的资源分配问题)某厂新购某种机床125台。据估计,这种设备5年后将被其它设备所代替。此机车如在高负荷状态下工作,年损坏率为1/2,年利润为10万元;如在低负荷状态下工作,年损坏率为1/5,年利润为6万元。问应如何安排这些机床的生产负荷,才能使5年内获得的利润最大?
    本问题具有时间上的次序性,在五年计划的每一年都要作出关于这些机床生产负荷的决策,并且一旦作出决策,不仅影响到本年利润的多少,而且影响到下一年初完好机床数,从而影响以后各年的利润。所以在每年初作决策时,必须将当年的利润和以后各年利润结合起来,统筹考虑。 与上面例1、例2类似的多阶段决策问题还有资源分配、生产存贮、可靠性、背包、设备更新问题等等。 
1.2 动态规划的基本概念


1.阶段
    动态规划问题通常都具有时间或空间上的次序性,因此求解这类问题时,首先要将问题按一定的次序划分成若干相互联系的阶段,以便能按一定次序去求解。如例1,可以按空间次序划分为A—B—C—D—E 4个阶段,而例2,按照时间次序可分成5个阶段。

2.状态
    在多阶段决策过程中,每阶段都需要作出决策,而决策是根据系统所处情况决定的。状态是描述系统情况所必需的信息。如例1中每阶段的出发点位置就是状态,例2中每年初拥有的完好机床数是作出机床负荷安排的根据,所以年初完好机床数是状态。一般地,状态可以用一个变量来描述,称为状态变量。记第k 阶段的状态变量为,k=1,2, …,n.

3.决策
    多阶段决策过程的发展是用各阶段的状态演变来描述的,阶段决策就是决策者从本阶段某状态出发对下一阶段状态所作出的选择。描述决策的变量称为决策变量,当第k 阶段的状态确定之后,可能作出的决策要受到这一状态的影响。这就是说决策变量还是状态变量 的函数,因此,又可将第k阶段状态下的决策变量记为()。
    在实际问题中,决策变量的取值往往限制在某一范围之内,此范围称为允许决策变量集合,记作Dk()。如例2中取高负荷运行的机床数为决策变量,则0≤是k阶段初完好机床数)为允许决策变量集合。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值