NYOJ 517 最小公倍数(C/C++)

最小公倍数

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。
但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。
事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。

我们希望寻找到能除尽1至n的的每个数字的最小整数m.
输入
多组测试数据(少于500组)。
每行只有一个数n(1<=n<=100).
输出
输出相应的m。
样例输入
2
3
4
样例输出
2
6
12
//优秀代码: 
 #include <stdio.h>
 int a,i,j,l;
 void prime(int pri[])
 {
     for(i=2;i<=100;i++)
         if(!pri[i])
             for(j=i+i;j<=100;j+=i)
                 pri[j]=1;
 }
 void bingo(int ans[][45],int pri[])
 {
     for(a=3;a<=100;a++)  //打表
     {
         ans[a][0]=1;
         for(i=2;i<=a;i++)
         {
             if(!pri[i])
             {
                 j=i;
                 while(j<=a)
                 {
                     j*=i;
                     int temp=0;
                     for(l=0;l<50;l++)
                     {
                         int p=ans[a][l]*i+temp;
                         ans[a][l]=p%10;
                         temp=p/10;
                     }
                 }
             }
         }
     }
 }
 int main()
 {
     int pri[100]={1,1,0},ans[101][45]={0};
     prime(pri);
     bingo(ans,pri);
     while(scanf("%d",&a)!=EOF)
     {
         if(a==1||a==2)
             printf("%d\n",a);
         else
         {
             for(i=44;i>=0;i--)
                 if(ans[a][i]) break;
             for(j=i;j>=0;j--)
                 printf("%d",ans[a][j]);
             printf("\n");
         }
     }
     return 0;
 }

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
孪生素数是指两个素数之间的差值为2的素数对。通过筛选法可以找出给定素数范围内的所有孪生素数的组数。 在引用的代码中,使用了递归筛选法来解决孪生素数问题。该程序首先使用循环将素数的倍数标记为非素数,然后再遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 具体实现过程如下: 1. 定义一个数组a[N,用来标记数字是否为素数,其中N为素数范围的上限。 2. 初始化数组a,将0和1标记为非素数。 3. 输入要查询的孪生素数的个数n。 4. 循环n次,每次读入一个要查询的素数范围num。 5. 使用两层循环,外层循环从2遍历到num/2,内层循环从i的平方开始,将素数的倍数标记为非素数。 6. 再次循环遍历素数数组,找出相邻素数之间差值为2的素数对,并统计总数。 7. 输出总数。 至此,我们可以使用这个筛选法的程序来解决孪生素数问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python用递归筛选法求N以内的孪生质数(孪生素数)](https://blog.csdn.net/weixin_39734646/article/details/110990629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [NYOJ-26 孪生素数问题](https://blog.csdn.net/memoryofyck/article/details/52059096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值