问题引出
如图,从A城市到D城市的最短距离是多少?
解题步骤
- 首先初始化所有点到A店的距离为无穷大
- 从A点开始,通过A点更新其余点(或A相连的点),并且找到距离A点最近的那个点(这里是点B),作为下一次循环的起始点。
- 通过点B,更新与B相连的所有点,并且找到距离B点最近的那个点(这里是F),作为下一次循环的起始点。依次循环n - 1次(n是点的个数)。
过程分析(待续)
- 每一次循环都能找到距离A点相对近的那个点,那么最多循环n - 1次就能找到D点到A点的最短距离。
- 可能还没循环到n - 1次就找到D点,因此可以提前终止。
- 时间复杂度分析:
- 朴素版:n次循环依次找到距离A点最近的点,每次循环需要循环n次用于更新
- 堆优化版:n次循环依次找到距离A点最近的点,每次循环中找与该点(A点)相连的点(i点),如果路径(A->i)可以被更新,则将i点放入小顶堆。由于自带的堆不支持删除操作,且同一个点可能被不同的点更新,所以需要使用st数组记录i点是否被更新。
自定义关键字
N:最大节点个数。
M:最大有向边个数
n:输入节点个数
m:输入有向边个数
dist[N]:i号点距离原点的最短距离
st[N]:i号点是否被放入小顶堆。0表示未放入,1表示放入。
g[N][N]:g是邻接矩阵,g[a][b]表示从a点到b点的最短距离。
代码
朴素版
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int g[N][N], dist[N];
bool st[N];
int dijkstra(int n, int m) {
memset(dist, INF, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n; i++) {
//寻找距离原点最近的点
int t = -1;
for (int j = 1; j <= n; j++)
if (!st[j] && (t == -1 ||dist[j] < dist[t]))
t = j;
//如果该点就是目标点,则退出循环
if (t == n) break;
//标记该点为相对最近点
st[t] = true;
//通过该点更新与其他点之间的距离
for (int j = 1; j <= n; j++)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
if (dist[n] == INF) return -1;
return dist[n];
}
int main() {
memset(g, INF, sizeof g);
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = min(g[a][b], c);
}
cout << dijkstra(n, m);
return 0;
}
堆优化版
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
typedef pair<int, int> PII;
const int N = 100010, M = 100010, INF = 0x3f3f3f3f;
int e[N], ne[M], h[N], w[M], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b;
ne[idx] = h[a];
w[idx] = c;
h[a] = idx++;
}
int dijkstra(int n) {
memset(dist, INF, sizeof dist);
dist[1] = 0;
//创建小顶堆
priority_queue<PII, vector<PII>, greater<PII>> heap;
PII tmp;
tmp.first = 0, tmp.second = 1;
heap.push(tmp);
while (heap.size()) {
PII t = heap.top();
heap.pop();
int d = t.first, ver = t.second;
if (st[ver]) continue;
st[ver] = true;
//更新与之相连的节点
for (int i = h[ver]; i != -1; i = ne[i]) {
int j = e[i];
if (dist[j] > dist[ver] + w[i]) {
dist[j] = dist[ver] + w[i];
PII tmp;
tmp.first = dist[j], tmp.second = j;
heap.push(tmp);
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main() {
memset(h, -1, sizeof h);
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra(n);
return 0;
}