2021.11 直方图均衡化
2021.12.21 傅里叶变换
以下摘抄自
傅里叶分析之掐死教程
快速傅里叶变换
这种以时间作为参照来观察动态世界的方法我们称其为时域分析
用另一种方法来观察世界的话,你会发现世界是永恒不变的。你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。
在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符
傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲
而贯穿时域与频域的方法之一,就是传中说的傅里叶分析
傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation)
用前面说的正弦曲线波叠加出一个带90度角的矩形波
第四幅图是10个便秘的正弦波的叠加
但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个
你能想到的任何波形都是可以如此方法用正弦波叠加起来的
在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形,而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量
每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波
如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。
时域的基本单元就是“1秒”,如果我们将一个角频率为的正弦波cos(t)看作基础,那么频域的基本单元就是。
有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。
介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:
频域图像,也就是俗称的频谱,就是——
分割
我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。
但是在频域呢?则简单的很,无非就是几条竖线而已。
所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到