numpy 作业 1

import numpy as np
c = np.arange(1,15).reshape(7,2);
 
print(c)
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]
 [13 14]]
np.vsplit(c,3)
[array([[1, 2],
        [3, 4]]),
 array([[5, 6],
        [7, 8]]),
 array([[ 9, 10],
        [11, 12]])]
d = c.T
d
array([[ 1,  3,  5,  7,  9, 11],
       [ 2,  4,  6,  8, 10, 12]])
np.hsplit(d,3)
[array([[1, 3],
        [2, 4]]),
 array([[5, 7],
        [6, 8]]),
 array([[ 9, 11],
        [10, 12]])]
import numpy as np
a = np.array((1,2,4,6))
b = np.array((7,8,9,20))
e = np.dstack((a,b))
e
array([[[ 1,  7],
        [ 2,  8],
        [ 4,  9],
        [ 6, 20]]])
np.dsplit(e,2)
[array([[[1],
         [2],
         [4],
         [6]]]),
 array([[[ 7],
         [ 8],
         [ 9],
         [20]]])]
inistate =np.array([1,2,3,4])
pre_inistate = inistate[0:3]
pre_inistate
array([1, 2, 3])
import numpy as np 
a = np.array([1,1,1,1]) 
b = np.array([[1],[1],[1],[1]])
a+b
array([[2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2]])
c = np.array([[1,1,1,1]])
c+b
array([[2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2]])
W = np.array([[1,1,1],[2,2,2]])
W[:,1]
array([1, 2])
W[1]
array([2, 2, 2])
W[:,1] = np.array([3,3])
W


array([[1, 3, 1],
       [2, 3, 2]])
import numpy as np
matrix = [
    [1,2,3,4],
    [5,6,7,8],
    [9,10,11,12]
]
p1 = np.delete(matrix, 1, 0)
print('p1\n',p1)


[[ 1  2  3  4]
 [ 9 10 11 12]]
2 = np.delete(matrix, 1, 1) 
print('p2\n',p2)

[[ 1  3  4]
 [ 5  7  8]
 [ 9 11 12]]
p3 = np.delete(matrix, 1)
print('p3\n',p3)


[ 1  3  4  5  6  7  8  9 10 11 12]
p4 = np.delete(matrix, [0,1], 1) 
print('p4\n',p4)

 [[ 3  4]
  [ 7  8]
  [11 12]]
import numpy as np 
matrix = [
    [1,2,3,4], [5,6,7,8], [9,10,11,12] 
]
q1 = np.insert(matrix, 1, [1,1,1,1], 0)
print('q1\n',q1)

 [[ 1  2  3  4]
 [ 1  1  1  1]
 [ 5  6  7  8]
 [ 9 10 11 12]]
q2 = np.insert(matrix, 0, [1,1,1], 1) 
print('q2\n',q2)

[[ 1  1  2  3  4]
 [ 1  5  6  7  8]
 [ 1  9 10 11 12]]
q3 = np.insert(matrix, 2, [1,2,3], 1) # 第1维度(列)第2行添加[1,2,3]
print('q3\n',q3)


[[ 1  2  1  3  4]
 [ 5  6  2  7  8]
 [ 9 10  3 11 12]]
import numpy as np
c = [
[1,2,3,4],
[5,6,7,8],
[9,10,11,12]
]
m1 = np.append(c,[[2,2,2,2]],axis=0)
print('m1----\n',m1)

m1----
 [[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]
 [ 2  2  2  2]]
m2 = np.append(matrix,[[1],[1],[100]],axis=1)
print('m2-----\n',m2)

m2-----
 [[  1   2   3   4   1]
 [  5   6   7   8   1]
 [  9  10  11  12 100]]
m3 = np.append(matrix,[1,1,1,1])
print('m3-----\n',m3)

m3-----
 [ 1  2  3  4  5  6  7  8  9 10 11 12  1  1  1  1]
import numpy as np
a = np.random.choice(8,4) 
a

array([4, 5, 7, 7])
b = np.random.choice([0,1,2,23,34,45,56,89,7,55],4) 
b


array([34, 56,  1,  7])
c = np.random.choice(np.array([0,1,2,3,4,5,6,7,8,9,10]),4) 
c


array([0, 0, 1, 5])
d = np.random.choice([0,1,2,3,4,75,6,55,45,89],5,replace=False)
d


array([89,  2, 55,  1,  6])
f = np.random.choice(np.array([0,1,2,3,4,5,6]),5,p=[0.1,0.1,0.1,0.1,0.1,0.1,0.4])
f


array([0, 3, 6, 2, 5])
import numpy as np
a = np.array([[1,1,1],[2,2,2],[5,3,6],[25,5,4]])
a

array([[ 1,  1,  1],
       [ 2,  2,  2],
       [ 5,  3,  6],
       [25,  5,  4]])
b1 = np.argmax(a) 
b1


9
b2 = np.argmax(a, axis=0)
b2

array([3, 3, 2], dtype=int64)
b3 = np.argmax(a, axis=1)
b3

array([0, 0, 2, 0], dtype=int64)
import numpy as np
y1 = np.linspace(-5.0,5.0)
y1


array([-5.        , -4.79591837, -4.59183673, -4.3877551 , -4.18367347,
       -3.97959184, -3.7755102 , -3.57142857, -3.36734694, -3.16326531,
       -2.95918367, -2.75510204, -2.55102041, -2.34693878, -2.14285714,
       -1.93877551, -1.73469388, -1.53061224, -1.32653061, -1.12244898,
       -0.91836735, -0.71428571, -0.51020408, -0.30612245, -0.10204082,
        0.10204082,  0.30612245,  0.51020408,  0.71428571,  0.91836735,
        1.12244898,  1.32653061,  1.53061224,  1.73469388,  1.93877551,
        2.14285714,  2.34693878,  2.55102041,  2.75510204,  2.95918367,
        3.16326531,  3.36734694,  3.57142857,  3.7755102 ,  3.97959184,
        4.18367347,  4.3877551 ,  4.59183673,  4.79591837,  5.        ])
y2 = np.linspace(1,9,7) 
y2


array([1.        , 2.33333333, 3.66666667, 5.        , 6.33333333,
       7.66666667, 9.        ])
y3 = np.linspace(1,10,7,endpoint=False) 
y3

array([1.        , 2.28571429, 3.57142857, 4.85714286, 6.14285714,
       7.42857143, 8.71428571])
y4= np.linspace(1, 10, 6, retstep=True
y4


(array([ 1. ,  2.8,  4.6,  6.4,  8.2, 10. ]), 1.8)
import numpy as np
x = np.array([[1,2,3],[4,5,6],[1,2,3]])
x.flatten()

array([1, 2, 3, 4, 5, 6, 1, 2, 3])
x.ravel()

array([1, 2, 3, 4, 5, 6, 1, 2, 3])
x.ravel('F')

array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten('F')

array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten()[1] = 20
x

array([[1, 2, 3],
       [4, 5, 6],
       [1, 2, 3]])
x.ravel()[1] = 20
x


array([[ 1, 20,  3],
       [ 4,  5,  6],
       [ 1,  2,  3]])
x.reshape(1,-1)


array([[ 1, 20,  3,  4,  5,  6,  1,  2,  3]])
x = np.array([1,2,3,6,7,8])
x[None,:]


array([[1, 2, 3, 6, 7, 8]])
x[:,None]

array([[1],
       [2],
       [3],
       [6],
       [7],
       [8]])
x[np.newaxis, :]

array([[1, 2, 3, 6, 7, 8]])
x = np.array([[1,2,3],[2,3,4]])
np.prod(x)

144
np.prod(x,axis=1)

array([ 6, 24])
np.prod(x,axis=0)

array([ 2,  6, 12])
import numpy as np
x = np.array([[1,2,3],[-3,2,4],[5,-2,9]])
x

array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
y1 = np.maximum(2,x) 
y1

array([[2, 2, 3],
       [2, 2, 4],
       [5, 2, 9]])
y2 = np.minimum(3,x)
y2

array([[ 1,  2,  3],
       [-3,  2,  3],
       [ 3, -2,  3]])
x1 = x.copy()
x1

array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
x1[x1 < 2] = 0 
x1

array([[0, 2, 3],
       [0, 2, 4],
       [5, 0, 9]])
x2 = x.copy()
x2[x2 > 3] = 2 
x2

array([[ 1,  2,  3],
       [-3,  2,  2],
       [ 2, -2,  2]])
import numpy as np
x = np.array([[1,2,3],[-3,1,4],[1,-2,9]])
x

array([[ 1,  2,  3],
       [-3,  1,  4],
       [ 1, -2,  9]])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值